Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-27T21:51:34.069Z Has data issue: false hasContentIssue false

Static versus Dynamical Cosmic-ray Halos

Published online by Cambridge University Press:  03 August 2017

Frank C. Jones*
Affiliation:
Laboratory for High Energy Astrophysics, Code 665 NASA/Goddard Space Flight Center Greenbelt, MD 20771, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dynamical halo of the Galaxy offers a natural explanation for the form of the variation of cosmic-ray path length with energy. The variation above 1 GeV per nucleon can be understood as due to the variation of the diffusion coefficient, and hence the resident time in the galaxy, with energy. The flattening of the curve below 1 GeV per nucleon is seen to mark a transition to a convection dominated regime where the variation of the diffusion coefficient is no longer a determining factor. It is possible that the random motion of the cosmic rays about the galaxy that prevents us from seeing their sources in a clear manner may enable us to extract information about the galaxy at large and learn something about its large scale motions.

Type
III. Theory and Modelling
Copyright
Copyright © Kluwer 1991 

References

REFERENCES

Bierman, J. L., Davis, L. (1958) Zs. Ap. 51, 19 Google Scholar
Blandford, R. D., Ostriker, J. P. (1980) Ap. J. 237, 793 Google Scholar
Bloemen, J. B. G. M. (1989) Adv. Space Res. 10, (2)199 Google Scholar
Freedman, I., Giler, M., Kearsey, S., Osborne, J. L. (1980) Astron. Ap. 82, 110 Google Scholar
Ginzburg, V. L., Khazan, Ya. M., Ptuskin, V. S. (1980) Ap. Space Sci. 68, 295 Google Scholar
Ipavitch, F. M. (1975) Ap. J. 196, 107 Google Scholar
Jokipii, J. R. (1976) Ap. J. 208, 900 Google Scholar
Jones, F. C. (1978) Ap. J. 222, 1097 Google Scholar
Jones, F. C. (1979) Ap. J. 229, 747 CrossRefGoogle Scholar
Kota, J., Owens, A. J. (1980) Ap. J. 237, 814 Google Scholar
Lerche, I., Schlickeiser, R. (1980) Ap. J. 239, 1089 Google Scholar
Lerche, I., Schlickeiser, R. (1981a) Ap. J. Suppl. 47, 33 Google Scholar
Lerche, L, Schlickeiser, R. (1981b) Astron. Ap. 107, 148 Google Scholar
Lerche, L, Schlickeiser, R. (1981c) Ap. Lett. 22, 31 Google Scholar
Owens, A. J., Jokipii, J. R. (1977a) Ap. J. 215, 677 CrossRefGoogle Scholar
Owens, A. J., Jokipii, J. R. (1977b) Ap. J. 215, 685 Google Scholar
Parker, E. N. (1965) Ap. J. 142, 584 Google Scholar
Parker, E. N. (1966) Ap. J. 145, 811 Google Scholar
Parker, E. N. (1968) in Stars and Stellar Systems, Vol. VII: Nebulae and Interstellar Matter , eds. Middlehurst, B. M., Allen, L. H., University of Chicago Press, Chicago, Chapt. 14 Google Scholar
Parker, E. N. (1969) Space Sci. Rev. 9, 651 Google Scholar
Pikel'ner, S. B. (1953) Doklady Akad. Nauk SSSR 88, 229 Google Scholar
Prischep, V. L., Ptuskin, V. S. (1975) Ap. Space Sci. 32, 265 Google Scholar
Shklovsky, I. S. (1952) Astr. Zh. 29, 418 Google Scholar
Stecker, F. W., Jones, F. C. (1977) Ap. J. 217, 843 CrossRefGoogle Scholar