Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T01:02:04.387Z Has data issue: false hasContentIssue false

Polarized CMB: Reionization and Primordial Tensor Modes

Published online by Cambridge University Press:  23 September 2016

Asantha Cooray*
Affiliation:
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA. E-mail: asante@caltech.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss upcoming opportunities with cosmic microwave background (CMB) observations during the post-WMAP era. The curl-modes of CMB polarization probe inflationary gravitational waves (IGWs). While a significant source of confusion is expected from cosmic shear conversion of polarization related to density perturbations, higher resolution observations of CMB anisotropies can be used for a lensing reconstruction and to separate gravitational-wave polarization signature from that of lensing. Separations based on current lensing reconstruction techniques allow the possibility to probe inflationary energy scales below 1015 GeV in a range that includes grand unified theories. The observational detection of primordial curl-modes is aided by rescattering at late times during the reionized epoch with optical depth to electron scattering at the level of 0.1 and above. An improved measurement of this optical depth is useful to optimize experimental parameters of a post-WMAP mission attempting to target the IGW background.

Type
Session I: Cosmic Microwave Background and Cosmology
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Cen, R. 2003, ApJ, 591, 12 CrossRefGoogle Scholar
Cooray, A., Bock, J. J., Keating, B., Lange, A.E., & Matsumoto, T. 2004, ApJ, 606, 611 CrossRefGoogle Scholar
Cooray, A., & Kesden, M. 2003, New Astronomy, 8, 231 CrossRefGoogle Scholar
Fan, X., et al. 2002, AJ, 123, 1247 CrossRefGoogle Scholar
Hirata, C. M., & Seljak, U. 2003, PRD, 68, 083002 CrossRefGoogle Scholar
Hu, W. 2001, ApJ, 557, L79.CrossRefGoogle Scholar
Hu, W., & Holder, G. P. 2003, PRD, 68, 023001 CrossRefGoogle Scholar
Hu, W., Sugiyama, N., & Silk, J. 1997, Nature 386, 37 CrossRefGoogle Scholar
Hu, W., & Okamoto, T. 2003, ApJ, 574, 566 CrossRefGoogle Scholar
Kamionkowski, M., & Kosowsky, A. 1999, Ann. Rev. Nucl. Part. Sci., 49, 77 CrossRefGoogle Scholar
Kamionkowski, M., Kosowsky, A., & Stebbins, A. 1997, PRL, 78, 2058 CrossRefGoogle Scholar
Kesden, M., Cooray, A., & Kamionkowski, M. 2002, PRL, 89, 011304 CrossRefGoogle Scholar
Kesden, M., Cooray, A., & Kamionkowski, M. 2003, PRD, 67, 123507 CrossRefGoogle Scholar
Knox, L., & Song, Y.-S. 2002, PRL, 89, 011303 CrossRefGoogle Scholar
Kogut, A., et al. 2003, ApJS, 148, 161 CrossRefGoogle Scholar
Kovac, J. M., et al. 2002, Nature, 420, 772 CrossRefGoogle Scholar
Melchiorri, A., & Odman, C. 2003, PRD, 67, 021501 CrossRefGoogle Scholar
Oh, S. P., Cooray, A., & Kamionkowski, M. 2003, MNRAS, 342, L20 CrossRefGoogle Scholar
Peebles, P.J.E., & Yu, J. T. 1970, ApJ, 162, 815 CrossRefGoogle Scholar
Sachs, R. K., & Wolfe, A. M. 1967, ApJ, 147, 73 CrossRefGoogle Scholar
Santos, M.G., Cooray, A., Haiman, Z., Knox, L., & Ma, C.-P. 2003, ApJ, 598, 756 CrossRefGoogle Scholar
Seljak, U., & Hirata, C. M. 2003, PRD, 69, 043005 CrossRefGoogle Scholar
Seljak, U., & Zaldarriaga, M. 1997, PRL, 78, 2054 CrossRefGoogle Scholar
Silk, J. 1968, ApJ, 151, 459 CrossRefGoogle Scholar
Spergel, D. N., et al. 2003, ApJS, 148, 175 CrossRefGoogle Scholar
Sunyaev, R. A., & Zel'dovich, Ya. B. 1970, Astrophys. Space Sci., 7, 3 CrossRefGoogle Scholar
Sunyaev, R. A., & Zel'dovich, Ya. B. 1980, MNRAS, 190, 413 CrossRefGoogle Scholar
Zaldarriaga, M. 1997, PRD, 55, 1822 CrossRefGoogle Scholar
Zaldarriaga, M., & Seljak, U. 1998, PRD, 58, 023003 CrossRefGoogle Scholar