Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T09:26:40.287Z Has data issue: false hasContentIssue false

New Results and Techniques in Space Radio Astronomy

Published online by Cambridge University Press:  14 August 2015

J. K. Alexander*
Affiliation:
Radio Astronomy Branch, Laboratory for Extraterrestrial Physics, Goddard Space Flight Center, Greenbelt, Md., U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first long wavelength radio astronomical observations from above the ionosphere were performed in the early 1960's using very short antennas on both sounding rockets and satellites. Although these exploratory measurements were sometimes troubled by perturbations arising in the local plasma enivronment and by spacecraft interference, they did develop the fundamental information and techniques on which to build more sophisticated low frequency radio astronomical systems. The first spacecraft designed specifically and exclusively for radio astronomical studies, Radio Astronomy Explorer 1, was launched on July 4, 1968. It carries two gravity-gradient stabilized, 229-m, travelling-wave V-antennas, a 37-m dipole antenna, and a number of radiometer systems to provide measurements over the 0.2 to 9.2 MHz frequency range (λ = 33 to 1500 m) with a time resolution of 0.5 sec and an absolute accuracy of about 25%. Although the observations may seem crude in some cases, when compared with those of ground-based telescopes, the RAE has afforded substantial improvement over the capabilities of the early flight experiments. Through the study of solar radio bursts down to 0.2 MHz, we are getting new information on the density, plasma velocity, and dynamics of coronal streamers out to distances of greater than 50 R⊙. From galactic continuum background maps at frequencies around 4 MHz, we are getting new information on the distribution of the ionized component of the interstellar medium. Cosmic noise background spectra measured down to ~ 0.5 MHz are providing new estimates of the interstellar flux of cosmic rays, of magnetic fields in the galactic halo, and of the nature of radiation from distant extragalactic radio sources.

A second RAE spacecraft is now being constructed for launch into a lunar orbit. This satellite will permit radio astronomical measurements at frequencies down to 30 kHz (λ = 10 km), will facilitate the use of the moon as an occulting disk for source position measurements, and will provide new information on the cislunar noise environment required to assess the feasibility of future lunar radio observatories. Studies are in progress on the feasibility and application of orbiting radio interferometers (baselines up to 5 km) and large orbiting filled-aperture telescopes (diameter ~ 1 km).

Type
Part IV: Radio Astronomy
Copyright
Copyright © Reidel 1971 

References

Alexander, J. K. and Stone, R. G.: 1964, Ann. Astrophys. 27, 837.Google Scholar
Alexander, J. K. and Stone, R. G.: 1965, Astrophys. J. 142, 1327.Google Scholar
Alexander, J. K., Brown, L. W., Clark, T. A., Stone, R. G., and Webber, R. R.: 1969, Astrophys. J. Letters 157, L163.Google Scholar
Alexander, J. K., Malitson, H. H., and Stone, R. G.: 1969, Solar Phys. 8, 388.Google Scholar
Alexander, J. K., Brown, L. W., Clark, T. A., and Stone, R. G.: 1970, Astron. Astrophys. 6, 476.Google Scholar
Benediktov, E. A., Getmantsev, G. G., Mityakov, N. A., Rapoport, V. O., Sazonov, Yu., and Tarasov, A. F.: 1965, in Cosmic Space Research: All-Union Conference on Space Physics, p. 581 (Moscow).Google Scholar
Bridle, A. H.: 1967, Monthly Notices Roy. Astron. Soc. 136, 219.Google Scholar
Chapman, J. H. and Molozzi, A. R.: 1961, Nature 191, 480.Google Scholar
Clark, T. A.: 1967, , Univ. of Colorado.Google Scholar
Clark, T. A., Brown, L. W., and Alexander, J. K.: 1970, Nature 228, 847.CrossRefGoogle Scholar
Ellis, G. R. A. and Hamilton, P. A.: 1966, Astrophys. J. 143, 227.Google Scholar
Fainberg, J. and Stone, R. G.: 1970a, Solar Phys. 15, 222.Google Scholar
Fainberg, J. and Stone, R. G.: 1970b, Solar Phys. 15, 433.Google Scholar
Getmantsev, G. G., Karavanov, V. S., Korobkov, Yu. S., and Tarasov, A. F.: 1968, Astron. Zh. 45, 936.Google Scholar
Grigoreva, V. P. and Slush, V. I.: 1970, Kosmich. Issled. 8, 284.Google Scholar
Haddock, F. T. and Graedel, T. E.: 1970, Astrophys. J. 160, 293.CrossRefGoogle Scholar
Hakura, Y., Nishizaki, R., and Tao, K.: 1969, J. Radio Res. Labs. Japan 16, 215.Google Scholar
Hartz, T. R.: 1964a, Ann. Astrophys. 27, 823.Google Scholar
Hartz, T. R.: 1964b, Ann. Astrophys. 27, 831.Google Scholar
Hartz, T. R.: 1969a, Proc. IEEE 57, 1042.CrossRefGoogle Scholar
Hartz, T. R.: 1969b, Planet. Space Sci. 17, 267.Google Scholar
Huguenin, G. R., Lilley, A. E., McDonough, W. H., and Papagiannis, M. D.: 1964, Planetary Space Sci. 12, 1157.Google Scholar
Ko, H. C. and Kraus, J. D.: 1957, Sky Telescope 16, 160.Google Scholar
Purton, C. R.: 1966, Monthly Notices Roy. Astron. Soc. 133, 463.CrossRefGoogle Scholar
Slysh, V. I.: 1965, Kosmich. Issled. 3, 760.Google Scholar
Slysh, V. I.: 1967a, Astron. Zh. 44, 94.Google Scholar
Slysh, V. I.: 1967b, Astron. Zh. 44, 487.Google Scholar
Slysh, V. I.: 1967c, Kosmich. Issled. 5, 897.Google Scholar
Smith, F. G.: 1964, Ann. Astrophys. 27, 819.Google Scholar
Smith, F. G.: 1965, Monthly Notices Roy. Astron. Soc. 131, 145.Google Scholar
Stone, R. G., Malitson, H. H., Alexander, J. K., and Somerlock, C. R.: 1968, in Kiepenheuer, K. O. (ed.), ‘Structure and Development of Solar Active Regions’, IAU Symp. 35, 585, D. Reidel, Dordrecht.Google Scholar
Walsh, D.: 1969, Bull. Amer. Astron. Soc. 1, 67.Google Scholar
Walsh, D., Haddock, F. T., and Schulte, H. F.: 1964, in Muller, P. (ed.): Space Res. 4, 935, North-Holland Publ. Co., Amsterdam.Google Scholar
Weber, R. R. and Stone, R. G.: 1970, Nature 227, 591.CrossRefGoogle Scholar
Weber, R. R., Stone, R. G., and Somerlock, C. R.: 1969, Astron. Astrophys. 1, 44.Google Scholar
Yates, K. Y. and Wielebinsky, R.: 1965, Nature 208, 64.Google Scholar