Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T01:30:50.088Z Has data issue: false hasContentIssue false

Model atmospheres and spectral analyses of Wolf-Rayet stars

Published online by Cambridge University Press:  07 August 2017

W.-R. Hamann*
Affiliation:
Institut für Theoretische Physik und Sternwarte der Universität Kiel, D-24098 Kiel, B.R. Deutschland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stratified non-LTE models for expanding atmospheres have become available in the recent years. They are based on the idealized assumptions of spherical symmetry, stationarity and radiative equilibrium. The satisfactory agreement between calculated and observed Wolf-Rayet spectra suggests that this “standard model” is basically adequate for describing real WR atmospheres and hence can be applied for their quantitative spectral analyses. By the application of these models, the fundamental parameters have been determined meanwhile for the majority of the known Galactic WR stars. Most WN stars populate a vertical strip in the Hertzspung-Russell diagram at effective temperatures of ≈35 kK, the luminosities ranging from 104.5 to 105.9L. Only three WN stars of earliest subtype, other early-type WN stars if they have strong lines, and the WC stars are hotter. The chemical compositions of the WR atmospheres correspond to nuclear-processed material (WN: hydrogen burning in the CNO cycle; WC: helium burning). Hydrogen is depleted but still detectable in the cooler members of the WN subclass. Quantitatively, the hydrogen abundances show an interesting correlation with the luminosity which can be compared with the predictions from evolutionary calculations.

Type
Session II - Model atmospheres for single Wolf-Rayet stars
Copyright
Copyright © Kluwer 1995 

References

Baum, E., Hamann, W.-R., Koesterke, L., Wessolowski, U. 1992, A&A 266, 402 Google Scholar
Beals, C.S. 1929, MNRAS 90, 202 Google Scholar
Breysacher, J. 1981, A&A Suppl. 43, 203 Google Scholar
Castor, J.I., Van Blerkom, D. 1970, ApJ 161, 485 Google Scholar
Conti, P.S., Leep, E.M., Perry, D.N. 1983, ApJ 268, 228 Google Scholar
Crowther, P., Hillier, D.J., Smith, L.J. 1994a, Sp. Sci. Rev. 66, 271 CrossRefGoogle Scholar
Crowther, P., Hillier, D.J., Smith, L.J. 1994b, A&A in press Google Scholar
Glatzel, W., Kiriakidis, M., Fricke, K.J. 1993, MNRAS 262, L7 CrossRefGoogle Scholar
Hamann, W.-R. 1985, A&A 148, 364 Google Scholar
Hamann, W.-R. 1986, A&A 160, 347 Google Scholar
Hamann, W.-R. 1987, in: Kalkofen, W. (ed.), Numerical Radiative Transfer (Cambridge: CUP), p. 35 Google Scholar
Hamann, W.-R. 1994, Sp. Sci. Rev. 66, 237 Google Scholar
Hamann, W.-R., Schwarz, E. 1992, A&A 261, 523 Google Scholar
Hamann, W.-R., Wessolowski, U. 1990, A&A 227, 171 Google Scholar
Hamann, W.-R., Schmutz, W., Wessolowski, U. 1988, A&A 194, 190 Google Scholar
Hamann, W.-R., Leuenhagen, U., Koesterke, L., Wessolowski, U. 1992, A&A 255, 200 Google Scholar
Hamann, W.-R., Koesterke, L., Wessolowski, U. 1993a, A&A 274, 397 Google Scholar
Hamann, W.-R., Wessolowski, U., Koesterke, L. 1993b, A&A 281, 184 Google Scholar
Hillier, D.J. 1984, ApJ 280, 744 CrossRefGoogle Scholar
Hillier, D.J. 1987a, ApJ Suppl. 63, 947 Google Scholar
Hillier, D.J. 1987b, ApJ Suppl. 63, 965 Google Scholar
Hillier, D.J. 1988, ApJ 327, 822 Google Scholar
Hillier, D.J. 1989, ApJ 347, 392 CrossRefGoogle Scholar
Hillier, D.J. 1990, A&A 231, 116 Google Scholar
van der Hucht, K.A., Conti, P.S., Lundstrom, I., Stenholm, B. 1981, Sp. Sci. Rev. 28, 227 CrossRefGoogle Scholar
Kiriakidis, M., Fricke, K.J., Glatzel, W. 1993, MNRAS 264, 50 Google Scholar
Koesterke, L., Hamann, W.-R., Schmutz, W., Wessolowski, U. 1991, A&A 248, 166 Google Scholar
Koesterke, L., Hamann, W.-R., Wessolowski, U. 1992, A&A 261, 535 Google Scholar
Langer, N., Hamann, W.-R., Lennon, M., Najarro, F., Pauldrach, A.W.A., Puls, J. 1994, A&A in press Google Scholar
Meynet, G., Maeder, A., Schaller, G., Schaerer, D., Charbonnel, C. 1994, A&A Suppl. 103, 97 Google Scholar
Moffat, A.F.J., Drissen, L., Lamontagne, R., Robert, C. 1988, ApJ 334, 1038 Google Scholar
Nugis, T.: 1982a,b, in: de Loore, C.W.H. & Willis, A.J. (eds.), Wolf-Rayet stars: Observations, Physics, Evolution, Proc. IAU Symp. No. 99 (Dordrecht: Reidel), p. 127, p. 131 Google Scholar
Nugis, T. 1991, in: van der Hucht, K.A. & Hidayat, B. (eds.), Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, Proc. IAU Symp. No. 14.3 (Dordrecht: Kluwer), p. 75 Google Scholar
Nussbaumer, H., Schmutz, W., Smith, L.J., Willis, A.J., Wilson, R. 1979, in: Willis, A.J. (ed.), The First Year of IUE (London: UCL), p. 259 Google Scholar
Schaller, G., Schaerer, D., Meynet, G., Maeder, A. 1992, A&A Suppl. 96, 269 Google Scholar
Schmutz, W. 1994, Sp. Sci. Rev. 66, 253 CrossRefGoogle Scholar
Schmutz, W., Hamann, W.-R., Wessolowski, U. 1989, A&A 210, 236 Google Scholar
Smith, L.F., Hummer, D.G. 1988, MNRAS 230, 511 CrossRefGoogle Scholar
Smith, L.J., Willis, A.J. 1982, MNRAS 201, 451 CrossRefGoogle Scholar
Smith, L.J., Willis, A.J. 1983, A&A Suppl. 54, 226 Google Scholar
Torres, A.V. 1988, ApJ 325, 759 Google Scholar
Underhill, A.B. 1991, ApJ 383, 729 Google Scholar
Wessolowski, U., Schmutz, W., Hamann, W.-R. 1988, A&A 194, 160 Google Scholar
Willis, A.J., Wilson, R. 1978, MNRAS 182, 559 CrossRefGoogle Scholar