Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T23:29:21.989Z Has data issue: false hasContentIssue false

Magnetic Loop Models: from Sun to Stars

Published online by Cambridge University Press:  26 May 2016

M. Jardine
Affiliation:
School of Physics and Astronomy, University of St. Andrews, North Haugh, St Andrews, Fife, SCOTLAND KY16 9SS
A. Collier Cameron
Affiliation:
School of Physics and Astronomy, University of St. Andrews, North Haugh, St Andrews, Fife, SCOTLAND KY16 9SS
K. Wood
Affiliation:
School of Physics and Astronomy, University of St. Andrews, North Haugh, St Andrews, Fife, SCOTLAND KY16 9SS
J.-F. Donati
Affiliation:
Laboratoire dAstrophysique, Observatoire Midi-Pyrénées, 14 Av. E. Belin, F-31400 Toulouse, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review recent progress in determining the nature of the loop structures that form the coronae of solar-like stars. This progress has been driven by observational advances, in particular the new results from X-ray satellites (Chandra and XMM-Newton) and the availability of surface magnetograms from Zeeman-Doppler imaging. It is now clear that stars that are similar to the Sun in mass, but which rotate more rapidly, have a very different magnetic field structure. Their surfaces are more heavily spotted, with spots appearing at all latitudes, extending all the way up to the rotation pole. Their coronae are correspondingly much brighter in X-rays, containing plasma that is hotter and denser than on the Sun. In addition, stellar coronae can support massive co-rotating prominences out to many stellar radii. Recent efforts in modelling these magnetic structures are now bringing together both the surface magnetograms and also the coronal X-ray emission. The resulting coronal loop models show complex loop structures on all scales, with much of the X-ray emission coming from high latitudes where is does not suffer rotational self-eclipse. The observed high densities and X-ray emission measures are a natural consequence of the high magnetic flux density at the surface. The stripping of the corona due to centrifugal effects at high rotation rates can also explain the saturation and supersaturation of X-ray emission with increasing rotation rates, and the recent observation of a high rotational modulation in a supersaturated star.

Type
Part 10: Structural Elements: Magnetic Loops
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Altschuler, M. D., Newkirk, G. Jr. 1969, Solar Phys., 9, 131.CrossRefGoogle Scholar
Aschwanden, M. J., Schrijver, C. J. 2002, ApJS, 142, 269.CrossRefGoogle Scholar
Aschwanden, M. J. 2002, ApJ, 580, L79.CrossRefGoogle Scholar
Audard, M., Behar, E., Güdel, M., et al. 2001, A&A, 365, L329.Google Scholar
Barnes, J. R., Collier Cameron, A. 2001, MNRAS, 326, 950.CrossRefGoogle Scholar
Benz, A. O., Guedel, M. 1994, A&A, 285, 621.Google Scholar
Berdyugina, S. V., Usoskin, I. G. 2003, A&A, 405, 1121.Google Scholar
Brickhouse, N., Dupree, A. 1998, ApJ, 502, 918.CrossRefGoogle Scholar
Brickhouse, N. S., Dupree, A. K., Young, P. R. 2001, ApJ, 562, L75.CrossRefGoogle Scholar
Collier Cameron, A., Robinson, R. D. 1989a, MNRAS, 236, 57.CrossRefGoogle Scholar
Collier Cameron, A., Robinson, R. D. 1989b, MNRAS, 238, 657.CrossRefGoogle Scholar
Donati, J.-F., Collier Cameron, A. 1997, MNRAS, 291, 1.CrossRefGoogle Scholar
Donati, J.-F. et al. 2003, MNRAS, in press.Google Scholar
Drake, J. J., Peres, G., Orlando, S. et al. 2000, ApJ, 545, 1074.CrossRefGoogle Scholar
Dupree, A., Brickhouse, N., Doschek, G. et al. 1993, ApJ, 418, L41.CrossRefGoogle Scholar
Favata, F., Micela, G., Reale, F. 2001, A&A, 375, 485.Google Scholar
Feigelson, E. D., Gaffney, J. A., Garmire, G. et al. 2003, ApJ, 584, 911.CrossRefGoogle Scholar
Flaccomio, E., Damiani, F., Micela, G. et al. 2003, ApJ, 582, 398.CrossRefGoogle Scholar
Güdel, M. et al. 2001, in ASP Conf. Ser. 234: X-ray Astronomy 2000. p. 73.Google Scholar
Güdel, M., Arzner, K., Audard, M., Mewe, R. 2003, A&A, 403, 155.Google Scholar
Giampapa, M., Rosner, R., Kashyap, V. et al. 1996, ApJ, 463, 707.CrossRefGoogle Scholar
Granzer, Th. and Schüssler, M. and Caligari, P. and Strassmeier, K.G. 2000, A&A, 355, 1087.Google Scholar
Hussain, G. A. J., Jardine, M., Collier Cameron, A. 2001, MNRAS, 322, 681.CrossRefGoogle Scholar
Hussain, G. A. J., van Ballegooijen, A. A., Jardine, M., Collier Cameron, A. 2002, ApJ, 575, 1078.CrossRefGoogle Scholar
Jardine, M., Unruh, Y. C. 1999, A&A, 346, 883.Google Scholar
Jardine, M., Collier Cameron, A., Donati, J.-F. 2002, MNRAS, 333, 339.CrossRefGoogle Scholar
Jardine, M. 2003, MNRAS, in press.Google Scholar
Jeffries, R. 1998, MNRAS, 295, 825.CrossRefGoogle Scholar
Jetsu, L., Pohjolainen, S., Pelt, J., Tuominen, I. 1997, A&A, 318, 293.Google Scholar
Korhonen, H., Berdyugina, S. V., Strassmeier, K. G., Tuominen, I. 2001, A&A, 379, L30.Google Scholar
Kürster, M., Schmitt, J., Cutispoto, G., Dennerl, K. 1997, A&A, 320, 831.Google Scholar
Maggio, A., Pallavicini, R., Reale, F., Tagliaferri, G. 2000, A&A, 356, 627.Google Scholar
Marino, A., Micela, G., Peres, G., Sciortino, S. 2003, IBVS, 5427, 1.Google Scholar
Marsden, S., Waite, I. A., Carter, B. D., Donati, J.-F. 2003, in IAU 2003, Joint Discussion Meeting JD9.Google Scholar
McIvor, T., Jardine, M., Collier Cameron, A. et al. 2003, MNRAS, 345, 601.CrossRefGoogle Scholar
Mewe, R., Raassen, A., Drake, J. et al. 2001, A&A, 368, 888.Google Scholar
Mohanty, S., Basri, G., Shu, F. et al. 2002, ApJ, 571, 469.CrossRefGoogle Scholar
Orlando, S., Peres, G., Reale, F. 2000, ApJ, 528, 524.CrossRefGoogle Scholar
Peres, G., Orlando, S., Reale, F. et al. 2000, ApJ, 528, 537.CrossRefGoogle Scholar
Prosser, C., Randich, S., Stauffer, J., Schmitt, J. 1996, AJ, 112, 1570.CrossRefGoogle Scholar
Randich, S. 1998, in Donahue, R. and Bookbinder, J., ed, 10th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. p. 501.Google Scholar
Reale, F., Betta, R., Peres, G. et al. 1997, A&A, 325, 782.Google Scholar
Rosner, R., Tucker, W. H., Vaiana, G. S. 1978, ApJ, 220, 643.CrossRefGoogle Scholar
Sanz-Forcada, J., Brickhouse, N. S., Dupree, A. K. 2003, ApJS, 145, 147.CrossRefGoogle Scholar
Sanz-Forcada, J., Maggio, A., Micela, G. 2003, A&A, 408, 1087.Google Scholar
Schmelz, J. T. 2002, ApJ, 578, L161.CrossRefGoogle Scholar
Schrijver, C. J., Aschwanden, M. 2002, ApJ, 566, 1147.CrossRefGoogle Scholar
Schrijver, C. J., Title, A. M. 2001, ApJ, 551, 1099.CrossRefGoogle Scholar
Schrijver, C. J., & Zwaan, C. 2000, Solar and Stellar Magnetic Activity. New York: Cambridge University Press, 2000. (Cambridge Astrophysics Series; 34).CrossRefGoogle Scholar
Schrijver, C. J., DeRosa, M. L., Title, A. M. 2003, ApJ, 590, 493.CrossRefGoogle Scholar
Schrijver, C., Mewe, R., van den Oord, G., Kaastra, J. 1995, A&A, 302, 438.Google Scholar
Schrijver, C. J. 2001, ApJ, 547, 475.CrossRefGoogle Scholar
Schüssler, M., Caligari, P., Ferriz-Mas, A. et al. 1996, A&A, 314, 503.Google Scholar
Serio, S., Peres, G., Vaiana, G. S. et al. 1981, ApJ, 243, 288.CrossRefGoogle Scholar
Siarkowski, M., Prés, P., Drake, S., White, N., Singh, K. 1996, ApJ, 473, 470.CrossRefGoogle Scholar
Singh, K., White, N., Drake, S. 1996, ApJ, 456, 766.CrossRefGoogle Scholar
Strassmeier, K. 1996, in Strassmeier, K.G., Linsky, J.L., eds, IAU Symposium 176: Stellar Surface Structure. Kluwer, p. 289.Google Scholar
van den Oord, G. H. J., Mewe, R. 1989, A&A, 213, 245.Google Scholar
Vilhu, O. 1984, A&A, 133, 117.Google Scholar
Wang, Y.-M. et al. 1997, ApJ, 485, 419.CrossRefGoogle Scholar
Weber, E. J., Davis, L. 1967, ApJ, 148, 217.CrossRefGoogle Scholar
Young, P., Dupree, A., Wood, B et al. 2001, ApJ, 555, L121.CrossRefGoogle Scholar