Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-10T22:50:50.670Z Has data issue: false hasContentIssue false

M51 - Fully-sampled Aperture Synthesis Maps of CO Emission

Published online by Cambridge University Press:  03 August 2017

K.Y. Lo
Affiliation:
Astronomy Department, University of Illinois
D.S. Adler
Affiliation:
Astronomy Department, University of Illinois
R.J. Allen
Affiliation:
Astronomy Department, University of Illinois
R. Plante
Affiliation:
Astronomy Department, University of Illinois
M.C.H. Wright
Affiliation:
Radio Astronomy Lab, University of California, Berkeley
G. Rydbeck
Affiliation:
Onsala Space Observatory

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present aperture synthesis CO maps of two 2'-fields of M51. These maps, in contrast to previous interferometer maps, do not have any missing flux. They show directly that most of the CO emission arise from broad spiral arms, whereas previously it was assumed that the missing CO flux (≥ 65% of the total flux) is uniformly distributed. Inferences involving extended CO emission and widths of the CO spiral arms based on interferometer maps with missing flux may need to be reviewed. The “missing short spacings” problem is also discussed.

Type
III- Observations of Spiral Structure
Copyright
Copyright © Kluwer 1991 

References

Adler, D.S., Lo, K.Y., Wright, M.C.H., Rydbeck, G., Plante, R.L., and Allen, R.J. 1990, Astrophys. J., submitted.Google Scholar
Garcia-Burillo, S et al., 1990, this volume.Google Scholar
Guelin, M., Garcia-Burillo, S., Blundell, R., Cernicharo, J., Despois, D., and Steepe, H. 1989, Highlights of Astronomy, Volume 8, McNally, D. ed., IAU, page 575 (G89).Google Scholar
Lo, K.Y., Ball, R., Masson, C.R., Phillips, T.G., Scott, S., and Woody, D.P. 1987, Astrophys. J. Letters, 317, L63 (L87).Google Scholar
Mundy, L.G., Scoville, N.Z., Baath, L.B., Masson, C.R., and Woody, D.G. 1986, Astrophys. J. Letters, 304, L51.Google Scholar
Rand, R.J., and Kulkarni, S.R. 1990, Astrophys. J. Letters, 349, L43 (RK).Google Scholar
Roberts, W.W., and Adler, D.S. 1989, Celestial Mechanics, 45, 285.Google Scholar
Roberts, W.W., and Hausman, M.A. 1984, Astrophys. J., 277, 144.Google Scholar
Rydbeck, G., Hjalmarson, A., and Rydbeck, O.E.H. 1985, Astron. Astrophys, 144, 282 (RHR).Google Scholar
Rydbeck, G., Hjalmarson, A., Wilkind, T., and Rydbeck, O.E.H. 1989, in the Proceedings of the UMASS Conference on Molecular Clouds in the Milky Way and External Galaxies, Dickman, J., Snell, R. and Young, J. eds., Springer Verlag, Berlin, page 446 (RHWR).Google Scholar
Stark, A.A. 1985, in “The Milky Way Galaxy”, van Woerden, H. ed., IAU, page 445.Google Scholar
Thompson, R., Moran, J. M., Swenson, G., 1986, “Interferometry and Synthesis in Radio Astronomy”, Wiley, New York.Google Scholar
Verter, F., and Kutner, M.L. 1988, Lecture Notes in Physics - “The Outer Galaxy”, Vol 306, Blitz, L. and Lockman, F.J. eds., Springer Verlag, Berlin, page 253.Google Scholar
Vogel, S.N., Kulkarni, S.R., and Scoville, N.Z. 1988, Nature, 334, 402 (VKS).Google Scholar
Vogel, S.N., Wright, M.C.H., Plambeck, P.L., and Welch, W.J. 1984, Astrophys. J., 283, 655.Google Scholar