Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-23T09:36:35.316Z Has data issue: false hasContentIssue false

Hydrodynamic Evolution of Coalescing Compact Binaries

Published online by Cambridge University Press:  25 May 2016

Frederic A. Rasio
Affiliation:
Institute for Advanced Study, Princeton, NJ 08540, USA
Stuart L. Shapiro
Affiliation:
Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In addition to their possible relevance to gamma-ray bursts, coalescing binary neutron stars have long been recognized as important sources of gravitational radiation that should become detectable with the new generation of laser interferometers such as LIGO. Hydrodynamics plays an essential role near the end of the coalescence when the two stars finally merge into a single object. The shape of the corresponding burst of gravitational waves provides a direct probe into the interior structure of a neutron star and the nuclear equation of state. The interpretation of the gravitational waveform data will require detailed theoretical models of the complicated three-dimensional hydrodynamic processes involved. Here we review the results of our recent work on this problem, using both approximate quasi-analytic methods and large-scale numerical hydrodynamics calculations on supercomputers. We also discuss briefly the coalescence of white-dwarf binaries, which are also associated with a variety of interesting astrophysical phenomena.

Type
1 Binary Evolution
Copyright
Copyright © Kluwer 1996 

References

Abramovici, A. et al. 1992, Science 256, 325.Google Scholar
Bailyn, C.D. 1993, in Structure and Dynamics of Globular Clusters , Djorgovski, S.G. & Meylan, G. (Eds.), ASP Conf. Proc. Vol. 50, p. 191.Google Scholar
Baym, G. 1991, in Neutron Stars: Theory and Observation , Ventura, J. & Pines, D. (Eds.), Kluwer Academic Publishers, p. 21.Google Scholar
Benz, W. et al. 1990, ApJ 348, 647.CrossRefGoogle Scholar
Bildsten, L. & Cutler, C. 1992, ApJ 400, 175.Google Scholar
Bradaschia, C. et al. 1990, Nucl. Instr. Methods A289, 518.Google Scholar
Canal, R. et al. 1990, ApJ 356, L51.Google Scholar
Chandrasekhar, S. 1969, Ellipsoidal Figures of Equilibrium , Yale University Press; revised Dover edition 1987.Google Scholar
Chandrasekhar, S. 1975, ApJ 202, 809.CrossRefGoogle Scholar
Chen, K. & Leonard, P.J.T. 1993, ApJ 411, L75.Google Scholar
Chernoff, D.F. & Finn, L.S. 1993, ApJ 411, L5.Google Scholar
Clark, J.P.A. & Eardley, D.M. 1977, ApJ 251, 311.Google Scholar
Colgate, S.A. 1990, in Supernovae , Woosley, S.E. (Ed.), Springer-Verlag, p. 585.Google Scholar
Cook, G.B., Shapiro, S.L. & Teukolsky, S.L. 1994, ApJ 424, 823.Google Scholar
Cutler, C. & Flanagan, E.E. 1994, Phys. Rev. D49, 2658.Google Scholar
Cutler, C. et al. 1993, Phys. Rev. Lett. 70, 2984.CrossRefGoogle Scholar
Davies, M.B. et al. 1994, ApJ 431, 742.Google Scholar
Eichler, D. et al. 1989, Nat 340, 126.Google Scholar
Evans, C.R., Iben, I. & Smarr, L. 1987, ApJ 323, 129.CrossRefGoogle Scholar
Finn, L.S. & Chernoff, D. 1993, Phys. Rev. D47, 2198.Google Scholar
Goldstein, H. 1980, Classical Mechanics , Addison-Wesley.Google Scholar
Iben, I. Jr & Tutukov, A.V. 1984, ApJS 54, 335.CrossRefGoogle Scholar
Iben, I. Jr & Tutukov, A.V. 1986, ApJ 311, 753.Google Scholar
Isern, P. 1994, in Evolutionary Links in the Zoo of Interacting Binaries , D'Antona, F. (Ed.), Mem. Soc. Astron. Ital. (in press).Google Scholar
Jaranowski, P. & Krolak, A. 1992, ApJ 394, 586.Google Scholar
Junker, W. & Schäfer, G. 1992, MNRAS 254, 146.Google Scholar
Kidder, L.E., Will, C.M. & Wiseman, A.G. 1992, Class. Quantum Grav. 9, L125.CrossRefGoogle Scholar
Kochanek, C.S. 1992, ApJ 398, 234.CrossRefGoogle Scholar
Lai, D., Rasio, F.A. & Shapiro, S.L. 1993a, ApJS 88, 205 [LRS1].Google Scholar
Lai, D., Rasio, F.A. & Shapiro, S.L. 1993b, ApJ 406, L63 [LRS2].Google Scholar
Lai, D., Rasio, F.A. & Shapiro, S.L. 1994a, ApJ 420, 811 [LRS3].Google Scholar
Lai, D., Rasio, F.A. & Shapiro, S.L. 1994b, ApJ 423, 344 [LRS4].CrossRefGoogle Scholar
Lai, D., Rasio, F.A. & Shapiro, S.L. 1994c, ApJ (in press) [LRS5].Google Scholar
Lincoln, C.W. & Will, C.M. 1990, Phys. Rev. D42, 1123.Google Scholar
Livio, M., Pringle, J.E. & Saffer, R.A. 1992, MNRAS 257, 15P.Google Scholar
Marković, D. 1993, Phys. Rev. D48, 4738.Google Scholar
Meegan, C.A. et al. 1992, Nat 355, 143.CrossRefGoogle Scholar
Meers, B.J. 1988, Phys. Rev. D38, 2317.Google Scholar
Mochkovitch, R. & Livio, M. 1989, A&A 209, 111.Google Scholar
Narayan, R., Paczyński, B. & Piran, T. 1992, ApJ 395, L83.Google Scholar
Narayan, R., Piran, T. & Shemi, A. 1991, ApJ 379, L17.Google Scholar
Nemiroff, R.J. 1994, Comments on Astrophysics (in press).Google Scholar
Nomoto, K. & Iben, I. Jr 1985, ApJ 297, 531.Google Scholar
Nomoto, K. & Kondo, Y. 1991, ApJ 367, L19.CrossRefGoogle Scholar
Paczyński, B. 1985, in Cataclysmic Variables and Low-mass X-ray Binaries , Lamb, D.Q. & Patterson, J. (Eds.), Reidel, p. 1.Google Scholar
Paczyński, B. 1986, ApJ 308, L43.Google Scholar
Paczyński, B. 1990, ApJ 365, L9.CrossRefGoogle Scholar
Phinney, E.S. 1991, ApJ 380, L17.CrossRefGoogle Scholar
Podsiadlowski, P., Pringle, J.E. & Rees, M.J. 1991, Nat 352, 783.Google Scholar
Rasio, F.A. & Shapiro, S.L. 1992, ApJ 401, 226 [RS1].Google Scholar
Rasio, F.A. & Shapiro, S.L. 1994, ApJ 432, 242 [RS2].Google Scholar
Rasio, F.A. & Shapiro, S.L. 1995a, ApJ (in press) [RS3].Google Scholar
Rasio, F.A. & Shapiro, S.L. 1995b, ApJ (in preparation) [RS4].Google Scholar
Schutz, B.F. 1986, Nat 323, 310.Google Scholar
Shapiro, S.L. & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and Neutron Stars , Wiley.Google Scholar
Shibata, M., Nakamura, T. & Oohara, K. 1992, Prog. Theor. Phys. 88, 1079.Google Scholar
Stebbins, R.T. et al. 1989, in Proc. 5th Marcel Grossman Meeting , Blair, D.G. & Buckingham, M.J. (Eds.), Cambridge Univ. Press, p. 179.Google Scholar
Strain, K.A. & Meers, B.J. 1991, Phys. Rev. Lett. 66, 1391.CrossRefGoogle Scholar
Tassoul, M. 1975, ApJ 202, 803.Google Scholar
Tassoul, J.-L. 1978, Theory of Rotating Stars , Princeton University Press.Google Scholar
Taylor, J.H. & Weisberg, J.M. 1989, ApJ 345, 434.Google Scholar
Thorne, K.S. 1987, in 300 Years of Gravitation , Hawking, S.W. & Israel, W. (Eds.), Cambridge University Press, p. 330.Google Scholar
Thorsett, S.E. et al. 1993, ApJ 405, L29.Google Scholar
Tutukov, A.V. & Yungelson, L.R. 1993, MNRAS 260, 675.Google Scholar
Usov, V.V. 1992, Nat 357, 472.Google Scholar
Webbink, R.F. 1984, ApJ 277, 355.Google Scholar
Wiseman, A.G. 1993, Phys. Rev. D48, 4757.Google Scholar
Wolszczan, A. 1991, Nat 350, 688.Google Scholar
Wolszczan, A. 1994, Science 264, 538.Google Scholar
Yungelson, L.R. et al. 1994, ApJ 420, 336.Google Scholar
Zughe, X., Centrella, J.M. & McMillan, S.L.W. 1994, Phys. Rev. D (in press).Google Scholar