Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-18T00:20:28.928Z Has data issue: false hasContentIssue false

How Important is Neutral Carbon to an Understanding of the Dense Interstellar Medium?

Published online by Cambridge University Press:  25 May 2016

D.T. Jaffe*
Affiliation:
Department of Astronomy, University of Texas at Austin Austin, Texas 78712 USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In virtually all of the dense interstellar medium, H2 is the most abundant form of hydrogen, but it is not directly observable in the bulk of the gas. As a result, we are forced to use trace constituents of the gas as surrogates when we want to know the distribution of material in the dense ISM. Most commonly, we employ the lowest few rotational transitions of CO and its isotopes as the trace species. One of the most hotly debated issues in the study of the molecular ISM is the extent to which one can trust CO or isotopic CO lines to reflect reliably the underlying H2 distribution (see Shier, Rieke, & Rieke (1994), Sodroski et al. (1995) for recent comments on the I(12CO)/N(H2) ratio and Lada et al. (1994) for a recent analysis of the relationship between isotopic CO and total cloud column densities). CO becomes increasingly unreliable as a tracer of H2 as the average column density between cloud surfaces exposed to ultraviolet photons and the shielded centers of clouds becomes smaller. Young stars in the galactic plane perfuse atomic and molecular clouds with far–UV (λ > 91 nm) radiation. This radiation tends to dissociate CO more readily than it dissociates H2 (Van Dishoeck & Black 1988). The differences in susceptibility of H2 and CO to photodissociation may lead to the existence of significant portions of the molecular medium where the usual trace species are underabundant or even absent. In addition, there is dense H I at the cloud boundaries, immediately outside the molecular material. In the UV–illuminated cloud surfaces, the gas-phase carbon is in the form of C I or C II. It is important, therefore, to determine the amount and location of large-scale C I emission if one hopes to know how much molecular and dense atomic gas is missing from studies using CO as a tracer and to what extent photodissociation is responsible for the absence of this CO. We discuss here some of the relevant theoretical and observational work on the relationship between C II, C I, CO and H2. Our principal aim is to see if and how observations of C I might help us to improve our knowledge of the distribution of dense neutral gas in the Milky Way.

Type
Chapter 6: How are we to Understand the Large Scale Structure of the ISM?
Copyright
Copyright © Kluwer 1996 

References

Bennett, C.L., and Hinshaw, G. 1993, in Back to the Galaxy, ed. Holt, S.S. and Verter, F. (AIP Conf. Proc. 278) (New York: AIP), 257 Google Scholar
Bennett, C.L. et al. 1994, ApJ, 434, 587.Google Scholar
Blitz, L. 1993, in Protostars and Planets III, ed. Levy, E.H. & Lunine, J.I., (Tucson: Univ. of Arizona), 125 Google Scholar
Büttgenbach, T.H. 1993, PhD Thesis, Caltech Google Scholar
Büttgenbach, T.H., Keene, J., Phillips, T.G., & Walker, C.K. 1992, ApJL, 397, 15 Google Scholar
de Jong, T., Dalgarno, A., & Boland, W. 1980, A&A, 91, 68 Google Scholar
Flower, D.R., Le Bourlot, J., Pineau des Forêts, G., and Roueff, E. 1994, A&A, 282, 225 Google Scholar
Hayes, M.A., & Nussbaumer, H. 1984, A&A 134, 195 Google Scholar
Hollenbach, D.J., & Tielens, A.G.G.M. 1995, in Proceedings of the 2nd Köln–Zermatt Symposium, ed. Winnewisser, G. & Pelz, G., (Springer), in press Google Scholar
Hollenbach, D.J., Takahashi, T., and Tielens, A.G.G. M. 1991, ApJ 377, 192 CrossRefGoogle Scholar
Jaffe, D.T., Plume, R., & Pak, S. 1995, this volume Google Scholar
Jaffe, D.T., Zhou, S., Howe, J.E., Herrmann, F., Madden, S.C., Poglitsch, A., & van der Werf, P.P. 1994, ApJ, 435,Google Scholar
Howe, J.E., Jaffe, D.T., Genzel, R., & Stacey, G.J. 1991, ApJ 373, 158 Google Scholar
Keene, J. 1995, in Proceedings of the 2nd Köln–Zermatt Symposium, ed. Winnewisser, G. & Pelz, G., (Springer), in press Google Scholar
Lada, C.J., Lada, E.A., Clemens, D.P., & Bally, J. 1994, ApJ, 429, 694 CrossRefGoogle Scholar
Le Bourlot, J., Pineau des Forêts, G., Roueff, E., & Schilke, P. 1993, ApJL, 416, 87 Google Scholar
McKee, C.F. 1989, ApJ, 345, 783 Google Scholar
Nakagawa, T. et al. 1993, in AIP Conference Proceedings 278, Back to the Galaxy , ed. Holt, S.S. & Verter, F., (AIP:New York), p. 303 Google Scholar
Plume, R. & Jaffe, D.T. 1995, PASP, submitted Google Scholar
Plume, R., Jaffe, D.T., & Keene, J. 1994, ApJ, 425, L49 Google Scholar
Plume, R., Jaffe, D.T., Tatematsu, K., & Keene, J. 1995, ApJ, to be submitted Google Scholar
Polk, K.S., Knapp, G.R., Stark, A.A., & Wilson, R.W. 1988, ApJ, 332, 432 Google Scholar
Reach, W.T., Chu, B.-C., & Heiles, C. 1994, ApJ 429, 672 Google Scholar
Rubin, R.H. 1985, ApJS, 57, 349 Google Scholar
Schilke, P., Carlstrom, J.E., Keene, J., & Phillips, T.G. 1993, ApJL, 416, 67 Google Scholar
Schröder, K., Staemmler, V., Smith, M.D., Flower, D.R., & Jaquet, R. 1991, J. Phys. B: At. Mol. Opt. Phys., 23, 2487 Google Scholar
Shibai, H. et al. 1991, ApJ, 374, 522 Google Scholar
Shier, L.M., Rieke, M.J., and Rieke, G.H. 1994, ApJL, 422, 9 CrossRefGoogle Scholar
Shu, F.H., Adams, F.C., & Lizano, S. 1987, ARAA, 25, 23 Google Scholar
Sodroski, T.J. et al. 1995, ApJ, in press Google Scholar
Solomon, P.M., Rivolo, A.R., Barrett, J., & Yahil, A. 1987, ApJ, 319, 730 Google Scholar
Stacey, G.J., Smyers, S.D., Kurtz, N.T., & Harwit, M. 1983, ApJL, 268, 99 Google Scholar
Stutzki, J., Stacey, G.J., Genzel, R., Harris, A.I., Jaffe, D.T., & Lugten, J.B. 1988, ApJ, 332, 379 Google Scholar
Tielens, A.G.G.M., & Hollenbach, D.J. 1985, ApJ, 291, 792 Google Scholar
van Dishoeck, E.F., & Black, J.H. 1988, ApJ, 334, 771 Google Scholar
White, G.J. & Padman, R. 1991, Nature, 354, 511 Google Scholar
Wild, W., Harris, A.I., Eckart, A., Genzel, R., Graf, U.U., Jackson, J.M., Russell, A.P.G., & Stutzki, J. 1992, A&A, 265,447 Google Scholar
Wright, E.L. et al. 1991, ApJ, 381, 200 Google Scholar