Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-02T16:09:52.694Z Has data issue: false hasContentIssue false

Giant planet formation — a theoretical timeline

Published online by Cambridge University Press:  26 May 2016

Günther Wuchterl*
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraβe, D–85748 Garching, Germany, http://youngstars.mpe.mpg.de/

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low mass circumstellar disks are a result of the star formation process. The growth of dust and solid planets in such pre-planetary disks determines many properties of our solar system. Models of the Solar System giant planets indicate an enrichment of heavy elements and imply heavy element cores. Detailed models therefore describe giant planet formation as a consequence of the formation of solid planets that have grown sufficiently large to permanently bind gas from the protoplanetary nebula. The diversity of Solar System and extrasolar giant planets is explained by variations in the core growth rates caused by a coupling of the dynamics of planetesimals and the contraction of the massive envelopes they dive into, as well as by changes in the hydrodynamical accretion behavior of the envelopes resulting from differences in nebula density, temperature and orbital distance. Detailed formation models are able to determine observables as luminosities, radii and effective temperatures of young giant planets. Present observational techniques do now allow to probe star formation regions at ages covering all evolutionary stages of the giant planet formation process.

Type
Part II: Progress in the theory of planet formation
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Alves, J. F., Lada, C. J., & Lada, E. A. 2001, Nature, 409, 159.CrossRefGoogle Scholar
Bodenheimer, P., & Pollack, J. B. 1986, Icarus, 67, 391.Google Scholar
D'Antona, F. & Mazzitelli, I. 1994, ApJS, 90, 457.Google Scholar
Dutrey, A. 1999, in Planets Outside the Solar System: Theory and Observations, ed. Mariotti, J.-M. & Alloin, D. (Dordrecht: Kluwer), 13.Google Scholar
Drouart, A., Dubrulle, B., Gautier, D., & Robert, F. 1999, Icarus, 140, 129.Google Scholar
Kley, W. 1999, MNRAS, 303, 696.Google Scholar
Lissauer, J. J. 1993, ARA&A, 31, 129.Google Scholar
Neuhäuser, R., Brandner, , Eckart, , Guenther, , Alves, , Ott, , Huelamo, , & Fernandez, 2000, A&A, 354, L9.Google Scholar
Palla, F., & Stahler, S. W. 1991, ApJ, 375, 288.Google Scholar
Palla, F., & Stahler, S. W. 1992, ApJ, 392, 667.Google Scholar
Tscharnuter, W.M. 1987, A&A, 188, 55.Google Scholar
Wuchterl, G. 1991b, Icarus, 91, 53.Google Scholar
Wuchterl, G. 1995b, Earth Moon and Planets, 67, 51.Google Scholar
Wuchterl, G. 1993, Icarus, 106, 323.Google Scholar
Wuchterl, G. 2000a, In Cool Stars, Stellar Systems and the Sun, Challenges for the New Millenium, the XI Cambridge workshop, ed., Garcia Lopez, R. J., Rebolo, R. & Zapatero-Osorio, M.-R., (San Francisco: ASP), in press2 .Google Scholar
Wuchterl, G. 2000b, in From Extrasolar Planets to Cosmology: The VLT Opening Symposium, ed. Bergeron, J. & Renzini, A. 408 (Berlin: Springer)Google Scholar
Wuchterl, G., Guillot, T., & Lissauer, J.J. 2000, in Protostars and Planets IV, ed. Mannings, V., Boss, A. P. & Russell, S. S., (Tucson: University of Arizona Press), 1081.Google Scholar
Wuchterl, G., & Klessen, R. 2001, ApJ, subm.2 .Google Scholar
Wuchterl, G., & Tscharnuter, W.M. 2001, A&A, subm.2 .Google Scholar