Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-13T02:31:03.007Z Has data issue: false hasContentIssue false

G2.4+1.4: An Extraordinary Mass-Loss Bubble Driven by an Extreme WO Star

Published online by Cambridge University Press:  03 August 2017

M.A. Dopita
Affiliation:
1Mt. Stromlo and Siding Spring Observatories, Australian National University.
T.A. Lozinskaya
Affiliation:
2Sternberg State Astronomical Institute, Moscow State Astronomical Institute.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nebula, G2.4+1.4, is shown to be a highly reddened, photoionised, mass-loss bubble of very high excitation powered by WR 102, the most extreme oxygen sequence Wolf-Rayet star known. It lies at a distance of 3±1kpc, and is about 11 pc in diameter. The exciting star, contains neither hydrogen nor helium in its atmosphere, is losing mass at a velocity of 5530 km.s-1, and has the following properties: log (Tion) = 5.20±0.05; log (R/R) = 0.05±0.20; log (L/L) = 5.85±0.20. We conclude that the star is the ~20M core of a supermassive star (M ≤ 60M) seen near the end of its life.

Type
Session VI. Enrichment
Copyright
Copyright © Kluwer 1991 

References

Abbott, D.C., and Conti, P.S. 1987, Ann. Rev. Ast. Astrophys., 25, 113.CrossRefGoogle Scholar
Barlow, M.J., and Hummer, D.G. 1982, in IAU Symp. #99, “Wolf-Rayet Stars: Observations, Physics, Evolution”, Eds. de Loore, C.W.H. and Willis, A.J., p387.Google Scholar
Binette, L., Dopita, M.A., and Tuohy, I.R. 1985, Astrophys. J., 297, 476.CrossRefGoogle Scholar
Blanco, V., Kunkel, W., and Hiltner, W.A. 1968a, Astrophys. J. Lett., 152, L 137.CrossRefGoogle Scholar
Caswell, J.L., and Haynes, R.F., 1987, Ast. Astrophys., 171, 261.Google Scholar
Chu, Y.-H., Treffers, R.R., and Kwitter, K.B., 1983, Astrophys. J. Suppl. Ser., 53, 937.CrossRefGoogle Scholar
Dopita, M.A., Binette, L., D'Odorico, S., and Benvenuti, P. 1984 Astrophys. J., 276, 653.CrossRefGoogle Scholar
Dopita, M.A., Lozinskaya, T.A., McGregor, P.J., and Rawlings, S.J. 1990, Astrophys. J., 351, 563.CrossRefGoogle Scholar
Dopita, M.A., and Lozinskaya, T.A. 1990b, Astrophys. J., 359, 419.CrossRefGoogle Scholar
Freeman, K.C., Rodgers, A.W., and Lynga, G., 1968, Nature, 219, 251.CrossRefGoogle Scholar
Goss, W.M., and Shaver, P.A., 1968, Astrophys. J. Lett., 154, L75.CrossRefGoogle Scholar
Green, D.A., and Downes, A.J.B., 1987, M.N.R.A.S., 225, 221.CrossRefGoogle Scholar
Hillier, D.J., Jones, T.J., and Hyland, A.R. 1983, Astrophys. J., 271, 221.CrossRefGoogle Scholar
Johnson, H.M. 1973, Mém. Soc. Roy. Liège, Ser #6, 5, 121.Google Scholar
Johnson, H.M. 1975, Astrophys. J., 198, 111.CrossRefGoogle Scholar
Johnson, H.M. 1976, Astrophys. J., 206, 243.CrossRefGoogle Scholar
Lundstrom, I., and Stenholm, B., 1979, Ast. Astrophys. Suppl., 35, 303.Google Scholar
Lozinskaya, T.A. 1980, Pisma Astron. Zh., 6, 350.Google Scholar
Lozinskaya, T.A., Lomovskij, A.I., Provdikova, B.B., and Surdin, B.G. 1988 Pisma Astron. Zh., 14, 909.Google Scholar
Maeder, A. 1983, Ast. Astrophys., 120, 113.Google Scholar
Rodgers, A.W., Conroy, P., and Bloxham, G. 1988a, P.A.S.P., 100, 626.CrossRefGoogle Scholar
Rodgers, A.W., van Harmelan, J., King, D., Conroy, P., and Harding, P. 1988b, P.A.S.P., 100, 841.CrossRefGoogle Scholar
Torres, A.V., Conti, P.S., and Massey, P., 1986, Astrophys. J., 300, 379.CrossRefGoogle Scholar
Treffers, R.R., and Chu, Y.-H. 1982a, Astrophys. J., 254, 132.CrossRefGoogle Scholar
Treffers, R.R., and Chu, Y.-H. 1982b, Astrophys. J., 254, 569.CrossRefGoogle Scholar
Turner, T.E., Forbes, D. 1982, P.A.S.P., 94, 789.CrossRefGoogle Scholar
Van Buren, D. 1986, Ap. J., 306, 538.CrossRefGoogle Scholar
van der Hucht, K.A., Conti, P.S., Lundstrom, I., and Stenholm, B., 1981, Space Sci. Rev., 3, 227.CrossRefGoogle Scholar
Williams, P.M., 1982, in IAU Symp. #99, “Wolf-Rayet Stars: Observations, Physics, Evolution”, Eds. de Loore, C.W.H. and Willis, A.J., p 73.CrossRefGoogle Scholar