Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-01T04:35:26.703Z Has data issue: false hasContentIssue false

Future AGN Research II

Published online by Cambridge University Press:  07 August 2017

Gregory A. Shields*
Affiliation:
Department of Astronomy, University of Texas at Austin, Austin, Texas 78712

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The “standard model” of AGN involves a supermassive black hole accreting gas, possibly through a flattened disk. This model enjoys widespread popularity among astronomers, but convincing proof has been elusive. Recent observations of “dormant” black holes in nearby galactic nuclei encourage the idea that black holes lie at the centers of AGN. An understanding of the nature of the accretion flow seems most likely to come from Doppler shifts of spectral features. The thermal continuum from the inner disk offers an intriguing opportunity. Theoreticians should not neglect the study of the thin disks that should exist for some AGN parameters, as these relatively “tame” objects may yield the most reliable observational tests. The broad emission lines may represent the debris of tidally disrupted stars.

Type
Part 12: Future
Copyright
Copyright © Kluwer 1989 

References

Begelman, M.C. 1985, in Astrophysics of Active Galaxies and Quasi-Stellar Objects, ed. Miller, J.S. (Univ. Science Books: Mill Valley) p. 411.Google Scholar
Begelman, M.C., McKee, C.F., and Shields, G.A. 1983, Ap. J., 271, 70.Google Scholar
Capriotti, E.R., Folz, C.B., and Byard, P. 1980, Ap. J., 241, 903.Google Scholar
Carroll, T. J., and Kwan, J. 1985, Ap. J., 288, 73.Google Scholar
Chandrasekhar, S. 1960, Radiative Transfer, (Dover: New York).Google Scholar
Clarke, C. J. 1987, , Oxford Univ. Google Scholar
Clarke, C. J., and Shields, G.A. 1989, Ap. J., in press.Google Scholar
Coleman, H., and Shields, G. 1988, in preparation.Google Scholar
Czerny, B., and Elvis, M. 1987, Ap. J., 321, 305.CrossRefGoogle Scholar
Dressler, A., and Richstone, D.O. 1988, Ap. J., 324, 701.Google Scholar
Fabian, A.C., and Canizares, C.R. 1988, Nature, 333, 829.Google Scholar
Fabricant, D., and Gorenstein, P. 1987, Ap. J., 267, 535.Google Scholar
Ferland, G.J., and Shields, G.A. 1985, in Astrophysics of Active Galaxies and Quasi-Stellar Objects, ed. Miller, J.S. (Univ. Science Books: Mill Valley), p. 157.Google Scholar
Gaskell, C.M. 1988, in Proceedings of the Georgia State University Conference on Active Galactic Nuclei, eds. Miller, H. R. and Wiita, P. J. (Springer: New York), p.Google Scholar
Gaskell, C.M. and Sparke, L.S. 1986, Ap. J., 306, 175.Google Scholar
Halpern, J. P. and Filippenko, A.V. 1988, Nature, 331, 46.Google Scholar
Hills, J.G. 1975 Nature, 254, 295.Google Scholar
Hubbard, E. N., and Puetter, R.C. 1983, Ap. J., 265, 35.Google Scholar
Joly, M., Collin-Souffrin, S., Masnou, J. L., and Nottale, L. 1985, Astron. Ap., 152, 282.Google Scholar
Kolykhalov, P.I., and Sunyaev, R.A. 1984, Adv. Space Res., 3, 249.Google Scholar
Kormendy, J. 1988, Ap. J., 325, 128.Google Scholar
Krolik, J.H., and London, R.A. 1983, Ap. J., 267, 18.Google Scholar
Kwan, J., and Carroll, T.J. 1982, Ap. J., 261, 25.Google Scholar
Lacy, J.H., Townes, C.H., and Hollenbach, D.J. 1982, Ap. J., 262, 120.Google Scholar
Liang, E.T.P. and Price, R.H. 1977, Ap. J., 218, 247.CrossRefGoogle Scholar
Lightman, A.P., and Eardley, D.M. 1974, Ap. J. (Letters), 187, L1.Google Scholar
Lynden-Bell, D. 1969, Nature, 223, 690.CrossRefGoogle Scholar
Malkan, M.A., and Sargent, W.L.W. 1982, Ap. J., 254, 22.Google Scholar
Madau, P. 1988, Ap. J., 327, 116.CrossRefGoogle Scholar
Margon, B., Grandi, S.A., and Downes, R.A. 1980, Ap. J., 241, 306.CrossRefGoogle Scholar
Mathews, W. G., and Blumenthal, G. R. 1977, Ap. J., 214, 10.CrossRefGoogle Scholar
Mathews, W. G., and Capriotti, E. R. 1985, in Astrophysics of Active Galaxies and Quasi-Stellar Objects, ed. Miller, J. S. (Univ. Science Books: Mill Valley), p. 185.Google Scholar
McCray, R. 1979, in Active Galactic Nuclei, ed. Hazard, C.R. and Mitton, S. (Cambridge: Cambridge University Press), p. 227.Google Scholar
Osterbrock, D.E. (1985), in Astrophysics of Active Galaxies and Quasi-Stellar Objects, ed. Miller, J.S. (Univ. Science Books: Mill Valley), p. 111.Google Scholar
Paczynski, B. 1981, Mitteilungen der Astronomischen Gesellschaft, 57, 27.Google Scholar
Papaloizou, J.C.B., and Pringle, J.E. 1984, Mon. Not. Roy. Astr. Soc., 208, 721.CrossRefGoogle Scholar
Peterson, B.M., Meyers, K.A., Capriotti, E.R., Foltz, C.B., Wilkes, B.J., and Miller, H.R. 1985, Ap. J., 292, 164.Google Scholar
Pringle, J.E. 1981, Ann. Rev. Astr. Ap., 19, 137.Google Scholar
Rees, M. J. 1988, Nature, 333, 523.Google Scholar
Serabyn, E., Lacy, J.H., Townes, C.H., and Bharat, R. 1988, Ap. J., 326, 171.Google Scholar
Shakura, N.I. and Sunyaev, R.A. 1973, Astr. Ap., 254, 22.Google Scholar
Shields, G.A. 1978a, Nature, 272, 706.CrossRefGoogle Scholar
Shields, G.A. 1978b, in Pittsburgh Conference on BL Lac Objects, ed. Wolfe, A. M. … (Pittsburgh: Univ. of Pittsburgh Press), p. 257.Google Scholar
Shields, G.A., and Wheeler, J.C. 1978, Ap. J., 222, 667.Google Scholar
Sikora, M. 1981, Mon. Not. Roy. Astr. Soc., 196, 257.CrossRefGoogle Scholar
Soltan, A. 1982, Mon. Not. Roy. Astr. Soc., 200, 115.Google Scholar
Smak, J. 1984, Publ. Astr. Soc. Pac., 96, 5.Google Scholar
Stockman, H.S., Angel, J.R.P., and Miley, G.K. (1979), Ap. J. (Letters), 227, L55.Google Scholar
Stockman, H.S., Moore, R. L., and Angel, J.R.P. (1984), Ap. J., 279, 485.Google Scholar
Tonry, J. 1984, Ap. J., 203, L27.Google Scholar
Ulrich, M. H., et al. 1984, Mon. Not. Roy. Astr. Soc., 206, 221.CrossRefGoogle Scholar
Wandel, A. and Petrosian, V. 1988, Ap. J. (Letters), 329, L11.CrossRefGoogle Scholar
Webb, W. and Malkan, M. 1987, in The Physics of Accretion Onto Compact Objects, eds. Mason, K.O., Watson, M.G., and White, N.E. (Springer Verlag: Berlin), p. 15.Google Scholar