Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-17T10:39:54.297Z Has data issue: false hasContentIssue false

Explosions from stellar collapse

Published online by Cambridge University Press:  26 May 2016

Chris L. Fryer*
Affiliation:
Theoretical Astrophysics, Los Alamos National Laboratory, T-6, MS B210, Los Alamos, NM 87545, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The collapse of a massive star releases a considerable amount of gravitational potential energy. This energy is believed to be the power source of some of the largest explosions in the universe: supernovae, hypernovae, gamma-ray bursts. In this proceedings, we review the mechanisms by which the potential energy from stellar collapse can be tapped to produce these strong explosions, emphasizing how our understanding of massive stars can help constrain these mechanisms.

Type
Part 2. Interiors of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Baron, E., Cooperstein, J., Kahana, S. 1985, Phys. Rev. Letters 55, 126.Google Scholar
Baron, E., Bethe, H.A., Brown, G.E., et al. 1987, Phys. Rev. Letters 59, 736.Google Scholar
Bionta, R.M., Blewitt, G., Bratton, C.B., et al. 1987, Phys. Rev. Letters 58, 1494.Google Scholar
Bloom, J.S., Kulkarni, S.R., Price, P.A., et al. 2002, ApJ (Letters) 572, L45.Google Scholar
Colgate, S.A., Johnson, M.H. 1960, Phys. Rev. Letters 5, 235.CrossRefGoogle Scholar
Colgate, S.A., White, R.H. 1966, ApJ 143, 626.Google Scholar
Duncan, R.C., Thompson, C. 1992, ApJ (Letters) 392, L9.CrossRefGoogle Scholar
Frail, D.A., Kulkarni, S.R., Sari, R., et al. 2001, ApJ (Letters) 562, L55.Google Scholar
Fruchter, A.S., Thorsett, S.E., Metzger, M.R., et al. 1999, ApJ (Letters) 519, L13.Google Scholar
Fryer, C.L. 1999, ApJ 522, 413.CrossRefGoogle Scholar
Fryer, C.L., Kalogera, V. 2001, ApJ 544, 548.CrossRefGoogle Scholar
Fryer, C.L., Warren, M.S. 2002, ApJ (Letters) 574, L65.Google Scholar
Fryer, C.L., Heger, A., Langer, N., Wellstein, S. 2002, ApJ 578, 335.Google Scholar
Hirata, K., Kajita, T., Koshiba, M., et al. 1987, Phys. Rev. Letters 58, 1490.Google Scholar
Kaspi, V.M., Chakrabarty, D., Steinberger, J. 1999, ApJ (Letters) 525, L33.Google Scholar
Kippen, R.M., Briggs, M.S., Kommers, J.M., et al. 1998, ApJ (Letters) 506, L27.Google Scholar
LeBlanc, J.M., Wilson, J.R. 1970, ApJ 161, 541.Google Scholar
Li, Z.-Y., Chevalier, R.A. 2001, ApJ 551, 940.Google Scholar
MacFadyen, A.I., Woosley, S.E. 1999, ApJ 524, 262.Google Scholar
Mazzali, P.A., Deng, J., Maeda, K., et al. 2002, ApJ (Letters) 572, L61.CrossRefGoogle Scholar
Müller, E., Hillebrandt, W. 1979, A&A 80, 147.Google Scholar
Nakamura, T., Mazzali, P.A., Nomoto, K., et al. 1999, Astron. Nach. 320, 4.Google Scholar
Oppenheimer, J.R., Snyder, H. 1939, Phys. Rev. 56, 455.Google Scholar
Popham, R., Woosley, S.E., Fryer, C.L. 1999, ApJ 518, 356.Google Scholar
Thompson, C., Murray, N. 2001, ApJ 560, 339.Google Scholar
Wheeler, J.C., Meier, D.L., Wilson, J.R. 2002, ApJ 568, 807.Google Scholar
White, G.L., Malin, D.F. 1987, Nature 327, 36.Google Scholar
Woosley, S.E. 1993, ApJ 405, 273.Google Scholar