Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-16T01:24:46.839Z Has data issue: false hasContentIssue false

The Effect of Collisions on Spectral Line Formation in Solar Magnetic Regions

Published online by Cambridge University Press:  14 August 2015

F. K. Lamb*
Affiliation:
Dept. of Theoretical Physics, Oxford University, Oxford, Englandcor1corresp
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present paper describes the results of a preliminary investigation of the effects on the absorption, emission, and scattering of polarized light caused by collisions between the atoms of interest and surrounding perturbers under physical conditions typical of solar magnetic regions. The description of these effects in terms of atomic level polarization is reviewed and the processes which can lead to atomic level polarization in solar magnetic regions and those which tend to reduce it are summarized. The effects associated with collisional relaxation of atomic level polarization are discussed and a method for estimating relaxation rates is described. Estimates of collisional relaxation rates are used to calculate upper limits on the degree of polarization of the levels involved in the formation of five magnetically-sensitive FeI absorption lines. The implications of the results for the form of radiative transfer equations used to describe the formation of these lines are discussed.

Type
Part II: The Interpretation of Magnetograph Results – The Formation of Absorption Lines in a Magnetic Field
Copyright
Copyright © Reidel 1971 

References

Baranger, M.: 1958, Phys. Rev. 111, 481.CrossRefGoogle Scholar
Barger, R. L.: 1967, Phys. Rev. 154, 94.CrossRefGoogle Scholar
Behmenburg, W.: 1964, J. Quant. Spectr. Radiative Transf. 4, 177.CrossRefGoogle Scholar
Ben-Reuven, A.: 1966a, Phys. Rev. 141, 34.Google Scholar
Ben-Reuven, A.: 1966b, Phys. Rev. 145, 7.Google Scholar
Berman, P. R. and Lamb, W. E.: 1969, Phys. Rev. 187, 221.Google Scholar
Böhm, K.-H.: 1960, Stars and Stellar Systems 6, p. 88.Google Scholar
Byron, F. W. and Foley, H. M.: 1964, Phys. Rev. 134, A625.CrossRefGoogle Scholar
Charvin, P.: 1965, Ann. Astrophys. 28, 877.Google Scholar
Cohen-Tannoudji, C.: 1962, Ann. Phys. Paris 7, 423.Google Scholar
Corliss, C. H. and Warner, B.: 1964, Astrophys. J. Suppl. 8, 395.Google Scholar
Domke, H.: 1969, Astrofiz. 5, 525.Google Scholar
Fano, U.: 1963, Phys. Rev. 131, 259.Google Scholar
Franken, P. A.: 1961, Phys. Rev. 121, 508.CrossRefGoogle Scholar
Griem, H. R.: 1964, Plasma Spectroscopy , McGraw-Hill Publishing Co., Inc., New York.Google Scholar
Happer, W. and Saloman, E. B.: 1967, Phys. Rev. 160, 23.Google Scholar
Hindmarsh, W. R., Petford, A. D., and Smith, G.: 1967, Proc. Roy. Soc. London A297, 296.Google Scholar
Lamb, F. K. and ter Haar, D.: 1971, Phys. Repts. , in press.Google Scholar
Moore, C.: 1945, Princeton Obs. Contr. , No. 20.Google Scholar
Obridko, V. N.: 1965, Astron. Zh. 42, 102 = Soviet Astron. 9, 77.Google Scholar
Omont, A.: 1965, J. Phys. Paris 26, 26.Google Scholar
Omont, A. and Meunier, J.: 1968, Phys. Rev. 169, 92.Google Scholar
Rachkovsky, D. N.: 1963, Izv. Krymsk. Astrofiz. Obs. 29, 97.Google Scholar
Rachkovsky, D. N.: 1967, Izv. Krymsk. Astrofiz. Obs. 36, 3.Google Scholar
Rebane, V. N. and Rebane, T. K.: 1966, Opt. Spectroskopiya 20, 185 = Opt. Spectry. 20, 101.Google Scholar
Roueff, E. and Van Regemorter, H.: 1969, Astron. Astrophys. 1, 69.Google Scholar
Spitzer, L.: 1940, Phys. Rev. 58, 348.Google Scholar
Stepanov, V. E.: 1962, Izv. Krymsk. Astrofiz. Obs. 27, 140.Google Scholar
Warner, B.: 1969, Observatory 89, 11.Google Scholar