Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T19:06:48.307Z Has data issue: false hasContentIssue false

Dust formation in oxygen-rich circumstellar shells around long–period variables

Published online by Cambridge University Press:  25 May 2016

Kyung Sook Jeong
Affiliation:
Institut für Astronomie und Astrophysik, Technische Universität Berlin, Sekr. PN 8–1, Hardenbergstr. 36, D-10623 Berlin, Germany
Jan Martin Winters
Affiliation:
Institut für Astronomie und Astrophysik, Technische Universität Berlin, Sekr. PN 8–1, Hardenbergstr. 36, D-10623 Berlin, Germany
Erwin Sedlmayr
Affiliation:
Institut für Astronomie und Astrophysik, Technische Universität Berlin, Sekr. PN 8–1, Hardenbergstr. 36, D-10623 Berlin, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the first steps of our work aimed at a consistent time-dependent modeling of oxygen–rich circumstellar dust shells (CDS) around pulsating AGB stars. The nature of the most likely nucleation seeds is investigated for this situation and we find that TiO2 is a most promising candidate to serve as the primary condensate, forming already at temperatures well above 1 000 K. These nuclei evolve to macroscopic dust grains by heterogeneous growth processes involving several chemical species. We investigate the varying chemical composition of the resulting dust grains as they evolve as a function of time in a fluid element moving through the CDS of an oxygen–rich long-period variable star (LPV).

Type
Part 3. Formation, Composition, and Processing of Dust
Copyright
Copyright © Astronomical Society of the Pacific 1999 

References

Chang, C., Patzer, A.B.C., Sedlmayr, E., Sülzle, D., 1998, Eur. Phys. J. D 2, 57 CrossRefGoogle Scholar
Danchi, W.C., Bester, M., Degiacomi, C.G., Greenhill, L.J., Townes, C.H., 1994, AJ 107, 1469 CrossRefGoogle Scholar
Dominik, C., Sedlmayr, E., Gail, H.-P., 1993, A&A 277, 578 Google Scholar
Feuchtinger, M.U., Dorfi, E.A., Höfner, S., 1993, A&A 273, 513 Google Scholar
Fleischer, A.J., Gauger, A., Sedlmayr, E., 1992, A&A 266, 321 Google Scholar
Gail, H.-P., Sedlmayr, E., 1998, in Chemistry and physics of molecules and grains in space , Faraday Discussion no. 109, Sarre, P. (ed.), London, p. 303 CrossRefGoogle Scholar
Gehrz, R.D., 1989, in Interstellar Dust , Allamandola, L.J. and Tielens, A.G.G.M. (eds.), Kluwer Academic Publishers, Dordrecht, p. 445 CrossRefGoogle Scholar
Jäger, C., Mutschke, H., Begemann, B., Dorschner, J., Henning, T., 1994, A&A 292, 641 Google Scholar
Koike, C., Shibai, H., Tuchiyama, A., 1993, MNRAS 264, 654 CrossRefGoogle Scholar
Kozasa, T., Hasegawa, H., 1987, Prog. Theor. Phys 77, 1402 CrossRefGoogle Scholar
Patzer, A.B.C., Chang, C., Sedlmayr, E., Sülzle, D., 1998a, Eur. Phys. J. D, submitted Google Scholar
Patzer, A.B.C., Gauger, A., Sedlmayr, E., 1998b, A&A 337, 847 Google Scholar
Zinner, E., 1998, Ann. Rev. Earth Planet. Sci 26, 147 CrossRefGoogle Scholar