Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-21T04:25:50.918Z Has data issue: false hasContentIssue false

Dust distribution and temperature in the Magellanic Clouds interstellar medium

Published online by Cambridge University Press:  19 July 2016

M. Sauvage
Affiliation:
Service d'Astrophysique, C.E.N. Saclay, 91191 Gif-sur-Yvette, France
L. Vigroux
Affiliation:
Service d'Astrophysique, C.E.N. Saclay, 91191 Gif-sur-Yvette, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review deals with the various aspects of interstellar dust in the Magellanic Clouds (MCs). Dust properties can be traced from interstellar absorption, with an emphasis on UV properties, and from infrared emission. Thanks to IRAS, most of the recent developments in this field have been found in the infrared. The low resolution of IRAS was, in fact, well suited for MC mapping and these observations offer a unique opportunity to study the dust properties in various conditions of the Interstellar Radiation Field (ISRF) and of chemical abundances. The proximity of the MCs allows a direct study of the link between the stellar population and the dust properties via the ISRF. On the other hand, the comparison of IRAS data in the MCs and in the Galaxy allows us to study the dust composition for metallicity varying by a factor of 10. From these data and the previous results on UV absorption, it emerges that if the gas-to-dust ratio changes with metallicity, there is also a variation in the relative abundances of the dust components. In this review, we will also discuss how our knowledge of the MCs will be used to prepare for observations of more distant galaxies, with the next generation of space observatories such as the Hubble Space Telescope and the Infrared Space Observatory.

Type
The Interstellar Medium
Copyright
Copyright © Kluwer 1991 

References

Bohlin, R.C., Savage, B.D., Drake, J.F. (1978), Astrophys. J. 224, 132.CrossRefGoogle Scholar
Bouchet, P., Lequeux, J., Maurice, E., Prévot, L., Prévot-Burnichon, M.L. (1985), Astron. Astrophys. 149, 330.Google Scholar
Boulanger, F., Beichman, C., Désert, F.X., Hélou, G., Pérault, M., Ryter, C. (1988), Astrophys. J. 332, 328.CrossRefGoogle Scholar
Boulanger, F., Falgarone, E. Puget, J.L., Hélou, G. (1990), Astrophys. J. (in press).Google Scholar
Cohen, R.S., Dame, T.M., Garay, G., Montani, J., Rubio, M., Thaddeus, P. (1988), Astrophys. J. 331, L95.CrossRefGoogle Scholar
Cox, P., Deharveng, L., Leene, A. (1990), Astron. Astrophys. 230, 181.Google Scholar
Dennefeld, M. (1989), Recent developments of Magellanic Cloud Research , de Boer, K.S., Stasinska, G., Spite, F. (eds.), (Observatoire de Paris: Paris) p. 107.Google Scholar
Désert, F.X. (1986), Light on Dark Matter , Israel, F.P. (ed.) (Reidel: Dordrecht) p.353.Google Scholar
Désert, F.X., Boulanger, F., Puget, J.L. (1990), Astron. Astrophys. (in press).Google Scholar
Dufour, R.J. (1984), IAU Symp 135 Structure and Evolution of the Magellanic Clouds , Van den Bergh, S., de Boer, K.S. (eds.) (Reidel: Dordrecht) p.353.CrossRefGoogle Scholar
Fitzpatrick, E.L. (1985), Astrophys. J. 299, 219.CrossRefGoogle Scholar
Fitzpatrick, E.L. (1986), Astron. J. 92, 1068.CrossRefGoogle Scholar
Hélou, G. (1986), Astrophys. J. 311, L33.CrossRefGoogle Scholar
Koornneef, J., Code, A.D. (1981), Astrophys. J. 247, 860.CrossRefGoogle Scholar
Kunth, D., Sévre, F. (1985), Star-Forming Dwarf Galaxies and Related Objects , Kunth, D., Thuan, T.X., Van, J.T.T. (eds.) (Institut d'Astrophysique: Paris) p.331.Google Scholar
Léger, A., Puget, J.L. (1984), Astron. Astrophys. 137, L5.Google Scholar
Lequeux, J. (1988), Dust in the Universe , Bailey, M.E., Williams, D.A. (eds.) (Cambridge University Press: Cambridge) p.449.Google Scholar
Lequeux, J. (1989), Recent developments of Magellanic Cloud Research , de Boer, K.S., Stasinska, G., Spite, F. (eds.), (Observatoire de Paris: Paris) p. 119.Google Scholar
Mathis, J.S., Whiffen, G. (1989), Astrophys. J. 341, 808.CrossRefGoogle Scholar
Puget, J.L., Léger, A. (1989), Ann. Rev. Astron. Astrophys. 27, 161.CrossRefGoogle Scholar
Rice, W., Lonsdale, C.J., Soifer, B.T., Neugebauer, G., Kopan, E.L., Lloyd, L.A., de Jong, T., Habing, H.J. (1988), Astrophys. J. Suppl. Ser. 68, 91.CrossRefGoogle Scholar
Rohlfs, K., Kreitzchmann, J., Stegman, B.C., Feitzinger, J.V. (1984), Astron. Astrophys. 137, 343.Google Scholar
Sauvage, M., Thuan, T.X., Vigroux, L. (1990), Astron. Astrophys. (in press).Google Scholar
Savage, B.D., Mathis, J.S. (1979), Ann. Rev. Astron. Astrophys. 17, 73.CrossRefGoogle Scholar
Schwering, P.B.W. (1988), PhD. thesis, Leiden.Google Scholar
Vigroux, L., Stasinska, G., Comte, G. (1987), Astron. Astrophys. 172, 15.Google Scholar