Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-28T08:06:22.009Z Has data issue: false hasContentIssue false

Distinction between distribution of masses of Wolf-Rayet stars and that of relativistic objects

Published online by Cambridge University Press:  26 May 2016

Anatol M. Cherepashchuk*
Affiliation:
Sternberg Astronomical Institute, 13, Universitetskii Prospekt, Moscow, 119992, Russia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The final masses MCO,f for the CO-cores of WR stars with known masses are calculated taking into account mass-dependent mass loss of WR stars and clumping structure of the WR wind which allows the mass loss rate to be decreased by a factor of 3. The masses of MCO,f lie in the range (1-2) - (20-44)M and have continuous distribution in contrast with distribution of masses Mx of relativistic objects. The distribution of Mx seems to be bimodal with a gap in the range Mx = 2-4 M. A mean CO-core mass <MCO,f = 7.4-10.3 M is close to that of black holes: <MBH = 8-10 M. Difference between distributions of MCO,f and Mx allows us to suggest that the nature of a formed relativistic object (neutron star, black hole) is determined not only by the mass of a progenitor but also by some other parameters: rotation, magnetic field, etc.

Type
Part 2. Interiors of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Bailyn, C.D., Jain, R.K., Coppi, P., Orosz, J.A. 1998, ApJ 499, 367.Google Scholar
Barziv, O., Kaper, L., van Kerkwijk, M.H., et al. 2001, A&A 377, 925.Google Scholar
Bisnovatyi-Kogan, G.S. 1970, Astron. Zh. 47, 813 (= 1971, Soviet Astron. 14, 652).Google Scholar
Charles, P. 2001, in: Kaper, L., van den Heuvel, E.P.J. & Woudt, P.A. (eds.), Black Holes in Binaries and Galactic Nuclei, ESO Astrophysics Symposia (Berlin: Springer), p. 27.Google Scholar
Cherepashchuk, A.M. 1990, Astron. Zh. 67, 955 (= Soviet Astron. 34, 481).Google Scholar
Cherepashchuk, A.M. 1998, in: Wiebe, D.S. (ed.), Modern Problems of Stellar Evolution, Proc. Int. Conf. Zvenigorod (Moscow: Geos Edition), p. 198.Google Scholar
Cherepashchuk, A.M. 2000, Space Sci. Reviews 93, 473.Google Scholar
Cherepashchuk, A.M. 2001, Astron. Zh. 78, 145 (= Astron. Reports 45, 120).Google Scholar
Ensman, L.M., Woosley, S.E. 1988, ApJ 333, 754.Google Scholar
Ergma, E., van den Heuvel, E.P.J. 1998, A&A (Letters) 331, L29.Google Scholar
Fryer, C.L., Kalogera, V. 2001, ApJ 554, 548.CrossRefGoogle Scholar
Gershtein, S.S. 2000, Pis'ma Astron. Zh. 26, 848 (= Astron. Letters 26, 730).Google Scholar
Harries, T.J., Hillier, D.J., Howarth, I.D. 1998, MNRAS 296, 1072.Google Scholar
van der Hucht, K.A. 2001, New Astron. Reviews 45, 135.Google Scholar
Iben, I., Tutukov, A.V., Yungelson, L.R. 1995, ApJS 100, 233.Google Scholar
Ivanova, L.N., Chechetkin, V.M. 1981, Astron. Zh. 58, 1028 (= Soviet Astron. 25, 548).Google Scholar
Langer, N. 1989, A&A 220, 135.Google Scholar
Moffat, A.F.J. 1995, in: van der Hucht, K.A. & Williams, P.M. (eds), Wolf-Rayet Stars: Binaries, Colliding Winds, Evolution, Proc. IAU Symp. No. 163 (Dordrecht: Kluwer), p. 213.Google Scholar
Nugis, T., Crowther, P.A., Willis, A.J. 1998, A&A 333, 956.Google Scholar
Paczynski, B. 1971, Acta Astron. 21, 1.Google Scholar
Postnov, K.A., Cherepashchuk, A.M. 2001, Astron. Zh. 78, 602 (= Astron. Reports 45, 517).Google Scholar
Postnov, K.A., Prokhorov, M.E. 2001, Astron. Zh. 78, 1025 (= Astron. Reports 45, 899).Google Scholar
Richardson, D., Branch, D., Casebeer, D., et al. 2002, AJ 123, 745.Google Scholar
Shore, S.N., Livio, M., van den Heuvel, E.P.J. 1994, in: Nussbaumer, H. & Orr, A. (eds.), Interacting Binaries, Lecture Notes of the 22nd Advanced Saas-Fee Cource of the SSAA (Berlin: Springer)Google Scholar
Thorsett, S.E., Chakrabarty, D. 1998, ApJ 512, 288.CrossRefGoogle Scholar
Tutukov, A.V., Cherepashchuk, A.M. 1985, Astron. Zh. 62, 1124 (= Soviet Astron. 29, 654).Google Scholar