Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T08:47:19.368Z Has data issue: false hasContentIssue false

The Core-Mantle Model of Interstellar Grains and the Cosmic Dust Connection

Published online by Cambridge University Press:  23 September 2016

J. Mayo Greenberg*
Affiliation:
Huygens Laboratorium, Rijksuniversiteit Leiden Postbus 9504, 2300 RA Leiden, The Netherlands

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Historically there have been two different types of grain modelling: One of these basically uses particle populations which evolve essentially by coagulation (e. g., the MRN model: Mathis, Rumpl and Nordsieck, 1977); the other considers the physical and chemical evolution of the particles with a particular emphasis on changes not only in sizes but also in chemical and morphological structure (e. g. Greenberg, 1978; Williams, 1989). The model of Oort and van de Hulst (1946) was the first to consider that grains must evolve in interstellar space by treating both growth and destruction in clouds. The chemical properties had already been derived by van de Hulst (1946) and then later described as the dirty ice model which consisted of the saturated molecules H2O, CH4 and NH3 with trace constituents of other atoms and molecules resulting from surface reactions of atoms on the grains. How such grains could nucleate was left as an unsolved problem but the fact that, once formed, there did not seem to be any reason why they should not grow until they exhausted the condensable atoms in the gas led to the suggestion that a limiting destructive mechanism must be provided. This was assumed to be by grain-grain collisions within clouds moving at relative speeds of 10 km s−1. We thus had the first dynamical theory leading to a steady state distribution of grain sizes. This model provided for me the starting point of the core-mantle model of grains. The observations of the 60's and henceforth clearly showed the existence of other types of small particles, which have been invoked to explain the 2200 å hump (Stecher and Donn, 1965), the far ultraviolet (FUV) extinction (Greenberg and Chlewicki, 1983), and now certain infrared emission features. These other components notwithstanding, grains still account for the major fraction of the solid particle mass in space.

Type
Section VI: Interstellar Dust Models
Copyright
Copyright © Kluwer 1989 

References

Agarwal, V. K., Schutte, W., Greenberg, J. M., Ferris, J. P., Briggs, R., Connor, S., van de Bult, C. P. E. M. and Baas, F. 1985, in Origin of Life, 16, 21.Google Scholar
Brownlee, D. E. 1978, in Cosmic Dust, ed. McDonnell, J. A. M., (New York: Wiley), p. 295.Google Scholar
Cameron, A. G. W. 1973, in Interstellar Dust and Related Topics, eds. Greenberg, J. M. and van de Hulst, H. C., (Dordrecht: Reidel).Google Scholar
Chlewicki, G. C. 1985, “Observational Constraints on Multimodal Interstellar Grain Populations”, , .Google Scholar
Chlewicki, G. C. and Greenberg, J. M. 1988, Ap. J., submitted.Google Scholar
Czyzak, S. J. and Santiago, J. J. 1973, Ap. Space Sci., 23, 443.Google Scholar
d'Hendecourt, L. B., Allamandola, L. J. and Greenberg, J. M. 1985, Astr. Ap., 152, 130.Google Scholar
Draine, B. T. and Salpeter, E. E. 1979, Ap. J., 231, 438.Google Scholar
Greenberg, J. M. 1968, in Nebulae and Interstellar Matter, (Stars and Stellar Systems, Vol. VII)., eds. Middlehurst, B. M. and Aller, L. H., (University of Chicago Press), p. 221.Google Scholar
Greenberg, J. M. 1976, Ap. Space Sci., 39, 9.Google Scholar
Greenberg, J. M. 1979, in from Stars and Star Systems, ed. Westlund, B. E., (Dordrecht: Reidel), 173.CrossRefGoogle Scholar
Greenberg, J. M. 1982, in Submillimetre Wave Astronomy, eds. Phillips, D. and Beekman, J. E., (Cambridge U. Press), p. 261.Google Scholar
Greenberg, J. M. 1982b, in Comets, ed. Wilkening, L. L., (University of Arizona Press), p. 131.Google Scholar
Greenberg, J. M. 1983, in Cometary Exploration, ed. Gombosi, T. I. (Hungarian Academy of Sciences), p. 23.Google Scholar
Greenberg, J. M. 1984, in Laboratory and Observational Infrared Spectra of Interstellar Dust, eds. Wolstencroft, R. D. and Greenberg, J. M., Occasional Reports of the Royal Obs. Edinburgh ISSNO309-049X, p. 82.Google Scholar
Greenberg, J. M. 1986, in Light on Dark Matter, ed. Israel, F. P., (Dordrecht: Reidel), p. 177.Google Scholar
Greenberg, J. M. 1986, in Asteroids, Comets and Meteors II, eds. Lagerkvist, C. I., Lindblad, B. A., Lundstedt, H. and Rickman, H., (Uppsala University Press), p. 221. item Greenberg, J. M. and Chlewicki, G. C. 1983, Ap. J., 272, 563.Google Scholar
Greenberg, J. M. and Chlewicki, G. C. 1987, Quart. J. R. A. S., 28, 312.Google Scholar
Greenberg, J. M., de Groot, M. S., and van der Zwet, G. P. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A., d'Hendecourt, L. B. and Boccara, N., (Dordrecht: Reidel), p. 177.Google Scholar
Greenberg, J. M., Zhao, Nansheng, Hage, J. I. 1988, Space Science Reviews, in press.Google Scholar
Grim, R. J. A. and Greenberg, J. M. 1987, Astr. Ap., 181, 153.Google Scholar
Hong, S. S. and Kwon, S. M. 1988, in Joint Discussion IV: The Cosmic Dust Connection. Google Scholar
Humphreys, R. M., Strecker, D. W., and Ney, E. P. 1972, Ap. J., 172, 75.CrossRefGoogle Scholar
Kissel, J. et al. 1986a, Nature, 321, 336.CrossRefGoogle Scholar
Kissel, J. et al. 1986b, Nature, 321, 280.Google Scholar
Kissel, J. and Krueger, F. R. 1987, Nature, 326, 755.Google Scholar
Larson, H. P., Weaver, H. A., Mumma, M. J., and Drapatz, S. 1988, Ap. J., in press.Google Scholar
McDonnell, J. A. M. et al. 1987, Astr. Ap., 187, 719.Google Scholar
Oort, J. H. and van de Hulst, H. C. 1946, BAN, 10 no. 376, 187.Google Scholar
Savage, R. D., Mathis, J. S. 1979, Ann. Rev. Astr. Ap., 17, 73.Google Scholar
Schutte, W. and Greenberg, J. M. 1986, in Light on Dark Matter, ed. Israel, J. F., (Reidel), p. 229.CrossRefGoogle Scholar
Schutte, W. 1988, “The Evolution of Interstellar Organics Grain Mantles”, , .Google Scholar
Simpson, J. E. et al. 1986, Nature, 321, 278.CrossRefGoogle Scholar
Stecher, T. P. and Donn, B. 1965, Ap. J., 142, 1681.CrossRefGoogle Scholar
Stecher, T. P. 1965, Ap. J., 142, 1683.Google Scholar
van de Hulst, H. C. 1946, Rech. Astr. Obs. Utrecht 11, part. 2.Google Scholar
van de Hulst, H. C. 1957, in Scattering of Light by Small Particles, (NY: Wiley).Google Scholar
van der Zwet, G. P., de Groot, M. S., Baas, F. and Greenberg, J. M. 1986, m Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A., d'Hendecourt, L. B. and Boccara, N., (Dordrecht: Reidel), p. 183.Google Scholar
Verniani, F. 1973, J. Geophys. Res., 78, 8429.Google Scholar
Williams, D. A. 1989. in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 367.Google Scholar
Wopenka, B. 1988, Earth and Planet Sci. Lett., 88, 221.Google Scholar