Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T10:29:49.430Z Has data issue: false hasContentIssue false

Contact binaries

Published online by Cambridge University Press:  04 August 2017

S.M. Ruciński*
Affiliation:
David Dunlap Observatory University of Toronto P.O. Box 360, Richmond Hill, Ont. L4C 4Y6, Canada

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The most promising mechanism for the formation of contact binaries involves the orbital angular momentum loss (AML) and the resulting orbital decay of detached but close synchronized binaries. The efficiency of magnetic wind braking should abruptly decrease upon formation of a contact binary because of the transformation into a system of earlier spectral type and (possibly) of longer orbital period. The new primary of the contact system should have convective zone thinner than indicated by the surface temperature of the common envelope. The decrease in the coronal (X-rays and radio) activity of contact binaries, which is indeed observed, is used as an agrument that the AML efficiency in contact is relatively low and that the contact stage is considerably prolonged relative to adjacent stages. This small modification to the AML models is capable of explaining why many different contact binaries are observed in old systems like NGC188. The AML evolution is not the only mechanism leading to formation of contact binaries; some of them may have originated via Algol-like evolution. Thus, the observed contact binaries are probably a mixture of systems formed in different ways.

Type
II. Photometric Research Programmes
Copyright
Copyright © Reidel 1986 

References

Anderson, L. and Shu, F.H.: 1977, Astrophys. J., 214, 798.Google Scholar
Baliunas, S.L. and Guinan, E.F.: 1985, Astrophys. J., 294, 207.Google Scholar
Batten, A.H. and Wenxian, Lu: 1985, preprint.Google Scholar
Bopp, B.W. and Rucinski, S.M.: 1981, in Fundamental Problems in the Theory of Stellar Evolution, eds. Sugimoto, D. et al. (Reidel Publ. Co.), p. 177.Google Scholar
Bopp, B.W. and Stencel, R.E.; 1981, Astrophys. J. (Lett.), 247, L131.Google Scholar
Budding, E.: 1984, Astron. Astrophys., 130, 324.Google Scholar
Campbell, C.G. and Papaloizou, J.: 1983, Mon. Not. Roy. astr. Soc., 204, 433.Google Scholar
Cruddace, R.G. and Dupree, A.K.: 1984, Astrophys. J., 277, 263.Google Scholar
Drechsel, H., Rahe, J., Wargau, W. and Wolf, B.: 1982, Astron. Astroph., 110, 246.Google Scholar
Duerbeck, H.W.: 1984, Mitt. Astr. Gesell., 62, 87.Google Scholar
Eaton, J.A.: 1983, Astrophys. J., 268, 800.Google Scholar
Eaton, J.A., Wu, C.-C. and Rucinski, S.M.: 1980, Astrophys. J., 239, 919.Google Scholar
Flannery, B.P.: 1976, Astrophys. J., 205, 217.Google Scholar
Hall, D.S. and Kreiner, J.M.: 1980, Acta Astron., 30, 387.Google Scholar
Hazlehurst, J.: 1970, Mon. Not. Roy. astr. Soc., 149, 129.Google Scholar
Hazlehurst, J.: 1985, Astron. Astrophys., 145, 25.Google Scholar
Herczeg, T.: 1979, Bull. Amer. Astr. Soc., 11, 438.Google Scholar
Hilditch, R.W., King, D.J., Hill, G. and Peockert, R.: 1984, Mon. Not. Roy. astr. Soc., 208, 135.Google Scholar
Hoffmann, M.: 1978, Inf. Bull. Var. Stars., No. 1478.Google Scholar
Hughes, V.A. and McLean, B.J.: 1984, Astrophys. J., 278, 716.Google Scholar
Hughes, V.A. and McLean, B.J.: 1985, in Radio Stars, eds. Hjellming, R.M. and Gibson, D.M. (Reidel Publ. Co.), p. 271.Google Scholar
Irwin, M.J. and Trimble, V.: 1984, Astron. J., 89, 83.CrossRefGoogle Scholar
Kaluzny, J.: 1983, Acta Astr., 33, 345.Google Scholar
King, D.J. and Hilditch, R.W.: 1984, Mon. Not. Roy. astr. Soc., 209, 645.Google Scholar
Kreiner, J.M.: 1977, in Interaction of Variable Stars with their Environment, eds. Kippenhahn, R. et al. (= Veröff. Bamberg, 11, No. 121), p. 393.Google Scholar
Lucy, L.B.: 1968, Astrophys. J., 151, 1123.CrossRefGoogle Scholar
Lucy, L.B.: 1976, Astrophys. J., 205, 208.Google Scholar
Lucy, L.B.: and Wilson, R.E.: 1979, Astrophys. J., 231, 502.Google Scholar
Mochnacki, S.W.: 1981, Astrophys. J., 245, 650.Google Scholar
Mochnacki, S.W.: 1985, in Interacting Binaries, eds. Eggleton, P.P. and Pringle, J.E. (Reidel Publ. Co.), p. 51.Google Scholar
Mochnacki, S.W., Fernie, J.D., Lyons, R., Schmidtt, F.H. and Gray, R.O.: 1985, preprint.Google Scholar
Moss, D.L.: 1971, Mon. Not. Roy. astr. Soc., 153, 41.Google Scholar
Moss, D.: 1985, Astron. Astrophys., 150, 343.Google Scholar
Moss, D.L. and Whelan, J.A.J.: 1970, Mon. Not. Roy. astr. Soc., 149, 147.Google Scholar
Noyes, R.W., Hartmann, L.W., Baliunas, S.L., Duncan, D.K. and Vaughan, A.H.: 1984, Astrophys. J., 279, 763.Google Scholar
Okamoto, I. and Sato, K.: 1970, Publ. Astr. Soc. Japan, 22, 317.Google Scholar
Popova, E.I., Tutukov, A.V. and Yungelson, L.R.: 1982a, Pisma v Astr. Zh., 8, 297.Google Scholar
Popova, E.I., Tutukov, A.V. and Yungelson, L.R.: 1982b, Astrophys. Space Sci., 88, 55.Google Scholar
Rahunen, T.: 1981, Astron. Astrophys., 102, 81.Google Scholar
Rahunen, T. and Vilhu, O.: 1982, in Binary and Multiple Stars as Tracers of Stellar Evolution, eds. Kopal, Z. and Rahe, J. (Reidel Publ. Co.), p. 289.Google Scholar
Robertson, J.A.: 1980, Mon. Not. Roy. astr. Soc., 192, 263.Google Scholar
Robertson, J.A. and Eggleton, P.P.: 1977, Mon. Not. Roy. astr. Soc., 179, 359.Google Scholar
Ruciński, S.M.: 1976, Publ. Astr. Soc. Pacific, 88, 244.Google Scholar
Ruciński, S.M.: 1982, Astron. Astrophys., 112, 273.Google Scholar
Ruciński, S.M.: 1983, Astron. Astrophys., 127, 84.Google Scholar
Ruciński, S.M.: 1984, The Observatory, 103, 280.Google Scholar
Ruciński, S.M.: 1985a, in Interacting Binaries, eds. Eggleton, P.P. and Pringle, J.E. (Reidel Publ. Co.), p. 13.Google Scholar
Ruciński, S.M.: 1985b, in Interacting Binary Stars, eds. Pringle, J.E. and Wade, R.A. (Cambridge Univ. Press), pp. 85 and 113.Google Scholar
Ruciński, S.M.: 1985c, Mon. Not. Roy. astr. Soc., 215, 615.Google Scholar
Ruciński, S.M. and Kaluzny, J.: 1981, Acta Astr., 31, 409.Google Scholar
Ruciński, S.M. and Kaluzny, J.: 1982, Astrophys. Space Sci., 88, 433.Google Scholar
Scharlemann, E.T.: 1981a, Astrophys. J., 246, 292.Google Scholar
Scharlemann, E.T.: 1981b, Astrophys. J., 246, 298.Google Scholar
Schmitt, J.H.M.M., Golub, L., Harnden, F.R. Jr., Maxson, C.W., Rosner, R. and Vaiana, G.S.: 1985, Astrophys. J., 290, 307.CrossRefGoogle Scholar
Shu, F.H., Lubow, S.H. and Anderson, L.: 1976, Astrophys. J., 209, 536.Google Scholar
Shu, F.H., Lubow, S.H. and Anderson, L.: 1980, Astrophys. J., 239, 937.Google Scholar
Skumanich, A.: 1972, Astrophys. J., 171, 565.Google Scholar
Smith, R.C.: 1984, Quart. Journ. Roy. astr. Soc., 25, 405.Google Scholar
Soderblom, D.R.: 1985, Astron. J., 90, 2103.Google Scholar
Tapia, S. and Whelan, J.: 1975, Astrophys. J., 200, 98.Google Scholar
Van Buren, D. and Young, A.: 1985, Astrophys. J. (Lett.), 295, L 39.Google Scholar
Vanden Berg, D.A.: 1985, Astrophys. J. Suppl., 58, 711.Google Scholar
Van't Veer, F.: 1978, Astron. Astrophys., 70, 91.Google Scholar
Van't Veer, F.: 1982, in Binary and Multiple Stars as Tracers of Stellar Evolution, eds. Kopal, Z. and Rahe, J. (Reidel Publ. Co.), p. 279.Google Scholar
Van't Veer, F.: 1984, Astron. Astrophys., 139, 477.Google Scholar
Vilhu, O.: 1982, Astron. Astrophys., 109, 17.Google Scholar
Vilhu, O.: 1984, Astron. Astrophys., 133, 117.Google Scholar
Vilhu, O. and Ruciński, S.M.: 1983, Astron. Astrophys., 127, 5.Google Scholar
Webbink, R.F.: 1976, Astrophys. J., 209, 829.Google Scholar
Williams, P.S. and Roxburgh, I.W.: 1976, Mon. Not. Roy. astr. Soc., 176, 81.Google Scholar
Wilson, R.E. and Starr, T.C.: 1976, Mon. Not. Roy. astr. Soc., 176, 625.Google Scholar
Zahn, J.-P.: 1977, Astron. Astrophys., 57, 383.Google Scholar