Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T14:51:19.570Z Has data issue: false hasContentIssue false

Chemistry in the Early Universe

Published online by Cambridge University Press:  07 August 2017

Paul R. Shapiro*
Affiliation:
Department of Astronomy The University of Texas at Austin Austin, TX 78712 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galaxies and the first stars in the universe formed billions of years ago as a result of the cooperative effects of gravitational collapse and nonequilibrium chemistry. Gravity drew the primordial gas together into lumps; the formation of the first molecules in the universe, simple diatomic molecules like H2, H2+, HD, HeH+, LiH, and LiH+, may then have ensured that the heat generated by gravitational collapse and shock waves was radiated away rapidly enough to allow the gravitational collapse and fragmentation of these gaseous lumps to proceed to the point of forming stars and galaxies. We briefly mention a few of the latest studies of this primordial chemistry, including that in the evolving intergalactic medium (IGM) in a Cold Dark Matter (CDM) model cosmology and that in radiative shocks in the early universe.

Type
Early Universe
Copyright
Copyright © Kluwer 1992 

References

REFERENCES

1. Lepp, S. and Shull, J. M. (1984) ‘Molecules in the Early Universe’, Ap. J., 280, 465469.CrossRefGoogle Scholar
2. Latter, W. B. and Black, J. H. (1991) ‘Molecular Hydrogen Formation By Excited Atom Radiative Association’, Ap. J., 372, 161166 CrossRefGoogle Scholar
3. Couchman, H.M.P. (1985) ‘Reheating of the Intergalactic Medium at z > 10’, M.N.R.A.S., 214, 137159.CrossRefGoogle Scholar
4. Giroux, M. L. and Shapiro, P. R. (1992) ‘The Reionization of the Intergalactic Medium’, Ap. J., to be submitted.Google Scholar
5. Peebles, P.J.E. and Dicke, R. H. (1968) ‘Origin of the Globular Star Clusters’, Ap. J., 154, 891908.CrossRefGoogle Scholar
6. Hirasawa, T., Aizu, K., and Taketani, M. (1969) ‘Formation of Galaxies from Hydrogen Gas’, Progr. Theor. Phys., 41, 835838.CrossRefGoogle Scholar
7. Hirasawa, T. (1969) ‘Formation of Protogalaxies and Molecular Processes in Hydrogen Gas’, Progr. Theor. Phys., 42, 523543.CrossRefGoogle Scholar
8. Matsuda, T., Sato, H., and Takeda, H. (1969) ‘Cooling of Pre-Galactic Gas Clouds by Hydrogen Molecule’, Progr. Theor. Phys., 42, 219232.CrossRefGoogle Scholar
9. Yoneyama, T. (1972) ‘On the Fragmentation of a Contracting Hydrogen Cloud in an Expanding Universe’, Pub. Astr. Soc. Japan, 24, 8798.Google Scholar
10. Hutchins, J. B. (1976) ‘The Thermal Effects of H2 Molecules in Rotating and Collapsing Spheroidal Gas Clouds’, Ap. J., 205, 103121.CrossRefGoogle Scholar
11. Silk, J. (1977) ‘On the Fragmentation of Cosmic Gas Clouds. I. The Formation of Galaxies and the First Generation of Stars’, Ap. J., 211, 638648.CrossRefGoogle Scholar
12. Carlberg, R. G. (1981) ‘An Estimate of the Mass of Zero Metal Stars’, M.N.R.A.S., 197, 10211029.CrossRefGoogle Scholar
13. Palla, F., Salpeter, E. E., and Stahler, S. W. (1983) ‘Primordial Star Formation: The Role of Molecular Hydrogen’, Ap. J., 271, 632641.CrossRefGoogle Scholar
14. Izotov, Yu. I. and Kolesnik, I. G. (1984) ‘Kinetics of H2 Formation in the Primordial Gas’, Soviet Astr., 28, No. 1, 1521.Google Scholar
15. Murray, S. D. and Lin, D.N.C. (1989) ‘The Fragmentation of Proto-Globular Clusters. I. Thermal Instabilities’, Ap. J., 339, 933942.CrossRefGoogle Scholar
16. Murray, S. D. and Lin, D.N.C. (1990) ‘On the Fragmentation of Protogalactic Clouds’, Ap. J., 363, 5056.CrossRefGoogle Scholar
17. Struck-Marcell, C. (1982) ‘Gas Cloud Collisions in Protogalaxies: I. Numerical Simulations’, Ap. J., 259, 116126.CrossRefGoogle Scholar
18. Struck-Marcell, C. (1982) ‘Star Formation in Protogalactic Gas Cloud Collisions’, Ap. J., 259, 127132.CrossRefGoogle Scholar
19. Shapiro, P. R. (1986) ‘Extragalactic Gas at High Redshift: A Chronograph of Nonlinear Departures from Hubble Flow’, in Madore, B. F. and Tully, R. B. (eds.), Galaxy Distances and Deviation from Universal Expansion, Reidel, Dordrecht, pp. 203213.CrossRefGoogle Scholar
20. MacLow, M. M. and Shull, J. M. (1986) ‘Molecular Processes and Gravitational Collapse in Intergalactic Shocks’, Ap. J., 302, 585589.CrossRefGoogle Scholar
21. Shapiro, P. R. and Kang, H. (1987), ‘Hydrogen Molecules and the Radiative Cooling of Pregalactic Shocks’, in Knapp, G. R. and Kormendy, J. (eds.), IAU Symposium 117: Dark Matter in the Universe, Reidel, Dordrecht, p. 365.CrossRefGoogle Scholar
22. Shapiro, P. R. and Kang, H. (1987) ‘Hydrogen Molecules and the Radiative Cooling of Pregalactic Shocks’, Ap. J., 318, 3265.CrossRefGoogle Scholar
23. Shapiro, P. R. and Kang, H. (1987) ‘Hydrogen Molecules and the Radiative Cooling of Pregalactic Shocks II: Low Velocity Shocks at High Redshift’, Rev. Mexicana Astron. Astrof., 24, 5865.Google Scholar
24. Shapiro, P. R., Giroux, M. L., and Kang, H. (1987) ‘New Results in the Theory of the Intergalactic Medium at High Redshift’, in Bergeron, J., Kunth, D., Rocca-Volmerange, B., and Tran Thanh Van, J. (eds.), High Redshift and Primeval Galaxies, Editions Frontières, pp. 501515.Google Scholar
25. Shapiro, P. R. and Kang, H. (1990) ‘Radiative Shocks and Nonequilibrium Chemistry in the Early Universe: Galaxy and Primordial Star Formation’, in Capuzzo-Dolcetta, R. et al. (eds.), Physical Processes in Fragmentation and Star Formation, Kluwer Academic, Dordrecht, pp. 5570.CrossRefGoogle Scholar
26. Kang, H., Shapiro, P. R., Fall, S. M., and Rees, M. J. (1990) ‘Radiative Shocks Inside Protogalaxies and the Origin of Globular Clusters’, Ap. J., 363, 488498.CrossRefGoogle Scholar
27. Kang, H. and Shapiro, P. R. (1992) ‘Radiative Shocks and Hydrogen Molecules in Pregalactic Gas: The Effects of Postshock Radiation’, Ap. J., 386, 432451.CrossRefGoogle Scholar
28. Shapiro, P. R., Clocchiatti, A., and Kang, H. (1991) ‘Magnetic Fields and Radiative Shocks in Protogalaxies and the Origin of Globular Clusters’, in Janes, K. (ed.), The Formation and Evolution of Star Clusters, (Astronomical Society of the Pacific Conference Series, Vol. 13), pp. 176179.Google Scholar
29. Shapiro, P. R., Clocchiatti, A., and Kang, H. (1992), ‘Magnetic Fields and Radiative Shocks in Protogalaxies and the Origin of Globular Clusters’, Ap. J., 387, in press.CrossRefGoogle Scholar
30. Dalgarno, A. and Lepp, S. (1987) ‘Chemistry in the Early Universe’, in Vardya, M. S. and Tarafdar, S. P. (eds.), I.A.U. Symposium 120: Astrochemistry, Kluwer Academic, Dordrecht, pp. 109120.Google Scholar
31. Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A., and Kang, H. S. (1991) ‘Primordial Nucleosynthesis Redux’, Ap. J., 376, 5169.CrossRefGoogle Scholar
32. Saslaw, W. C. and Zipoy, D. (1967) ‘Molecular Hydrogen in Pre-galactic Gas Clouds’, Nature, 216, 976978.CrossRefGoogle Scholar
33. Shapiro, P. R., Giroux, M. L., and Babul, A. (1991), ‘The Evolving Intergalatic Medium: The Uncollapsed Baryon Fraction in a Cold Dark Matter Universe’, in Holt, S. S., Bennett, C. L., and Trimble, V. (eds.), After The First Three Minutes (American Institute of Physics Conference Proceedings No. 222), pp. 347351.Google Scholar
34. Shapiro, P. R., Giroux, M. L., and Babul, A. (1992) ‘The Evolving Intergalatic Medium: The Uncollapsed Baryon Fraction in a Cold Dark Matter Universe’, Ap. J., to be submitted.CrossRefGoogle Scholar
35. Fall, S. M. and Rees, M. J. (1985) ‘A Theory for the Origin of Globular Clusters’, Ap. J., 298, 1826.CrossRefGoogle Scholar
36. Fall, S. M. and Rees, M. J. (1988) ‘The Origin of Globular Clusters’, in Grindlay, J. E. and Philip, A.G.D. (eds.), I.A.U. Symposium 126: Globular Cluster Systems in Galaxies, Reidel, Dordecht, pp. 323332.Google Scholar