Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-01T01:37:48.419Z Has data issue: false hasContentIssue false

Astrometry with the HST Fine Guidance Sensors

Published online by Cambridge University Press:  07 August 2017

M. G. Lattanzi
Affiliation:
Space Telescope Science Institute 3700 San Martin Drive Baltimore, MD 21218 USA
B. Bucciarelli
Affiliation:
Space Telescope Science Institute 3700 San Martin Drive Baltimore, MD 21218 USA
S. T. Holfeltz
Affiliation:
Space Telescope Science Institute 3700 San Martin Drive Baltimore, MD 21218 USA
L. G. Taff
Affiliation:
Space Telescope Science Institute 3700 San Martin Drive Baltimore, MD 21218 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents an overview of the current status of astrometry with the Fine Guidance Sensors (FGSs) on the Hubble Space Telescope. The FGSs have two astrometric modes of operation, one for positional (POS) and one for transfer function (TRANS) astrometry. The positional mode is intended for parallax and angular velocity work. Owing to optical aberrations in the Optical Telescope Assembly (OTA) (i.e., the main telescope optics) beyond the spherical aberration, and instabilities within the combined OTA/FGS optical system, it is undergoing additional feasibility review. Preliminary engineering tests showed changes in stellar pair positions of ∼ 100 milli-arc seconds which are far too large to allow for the expected ∼ 1 mas calibration. Alternate calibration procedures and data reduction algorithms are currently being developed to maximize the scientific potential of this mode which can be fulfilled at the ∼ 3 mas level.

The other operational mode-primarily intended for work on double stars but also usable for angular diameter determination-has proven more stable. Even the deleterious effects of the thermally induced solar array jitter have mostly been overcome. A large collection of reduction and analysis software is available to support this measurement technique (Lattanzi, Bucciarelli, Holfeltz, and Taff 1992) and its calibration is proceeding apace. Interesting scientific work from the FGSs on bright Hyades binaries and the highly eccentric double star ADS 11300 has already been published (Franz et al. 1991, 1992).

Finally, a new FGS Instrument Handbook (Taff 1992a) has been prepared which should minimize the complications of dealing with the General Observer Proposal Forms.

Type
Space Optical Astrometry
Copyright
Copyright © Kluwer 

References

Benedict, G. F. 1992, private communication.Google Scholar
Benedict, G. F., Jefferys, W. H., Wang, Q., Whipple, A. L., Nelan, E., Story, D., Duncombe, R. L., Hemenway, P. D., Shelus, P. J., McArthur, B., McCartney, J. E., Franz, O. G., Wasserman, L. W., Kreidl, T. J. N., van Altena, Wm. F., Girard, T., and Fredrick, L. W., 1991, in The First Year of HST Observations, eds. Kinney, A. L. and Blades, J. C., Space Telescope Science Institute, Baltimore, MD, pg. 131.Google Scholar
Bradley, A., Abramowicz-Reed, L., Story, D., Benedict, G., and Jefferys, W. 1991, PASP 103, 317.Google Scholar
Burrows, C. J., Holtzman, J. A., Faber, S. M., Bely, P. Y., Hasan, H., Lynds, C. R., and Schroeder, D. 1991, ApJ 369, L21.Google Scholar
Franz, O. G., Kreidl, T. J. N., Wasserman, L. W., Bradley, A. J., Benedict, G. F., Hemenway, P. D., Jefferys, W. H., McArthur, B., McCartney, J. E., Nelan, E., Shelus, P. J., Story, D., Whipple, A. L., Duncombe, R. L., Fredrick, L. W., and van Altena, Wm. F. 1991, ApJ 377, L17.Google Scholar
Franz, O. G., Wasserman, L. H., Nelan, E., Lattanzi, M. G., Bucciarelli, B., and Taff, L. G. 1992, AJ 103, 190.Google Scholar
Green, R. M. 1985, Spherical Astronomy, Camb. Univ. Press.Google Scholar
Kamper, K. W. and Wesselink, A. J. 1978, AJ 83, 1653.Google Scholar
Lattanzi, M. G., Bucciarelli, B., Holfeltz, S. T., and Taff, L. G. 1992, in the proceedings of IAU Colloq. No. 135.Google Scholar
Porter, J. G. and Sadler, D. H. 1953, MNRAS 113, 455.Google Scholar
Sandage, A. R. 1962, ApJ 135, 333.Google Scholar
Schwarzschild, K., 1894, Astron. Nachr. 136, 81.Google Scholar
Scott, F. P. and Hughes, J. A. 1964, AJ 369, 368.Google Scholar
Stumpff, P., 1985, A&A 144, 232.Google Scholar
Taff, L. G., 1990, ApJ 365, 407.Google Scholar
Taff, L. G. 1991, Adv. Space Res. 11, 97.Google Scholar
Taff, L. G. 1992a, Hubble Space Telescope Fine Guidance Sensor Instrument Handbook, Version 3.0, ST ScI, Baltimore, MD.Google Scholar
Taff, L. G. 1992b, submitted to ApJ.Google Scholar
Taff, L. G., Lattanzi, M. G., Bucciarelli, B., Gilmozzi, R., McClean, B. J., Jenkner, M., Laidler, V. G., Lasker, B. M., Shara, M. M., and Sturch, C. R., 1990, ApJ 353, L45.Google Scholar
Upgren, A. R., Mesrobian, W. S., and Kerridge, S. J. 1972, AJ 77, 74.Google Scholar
Walter, H. G., 1985, in Proceedings of the Second F.A.S.T. Thinkshop, CERGA, Grasse, p. 323.Google Scholar
Walter, H. G., Mignard, F., Hering, R., Froeschle, M., and Falin, J. L., 1986, Manu. Geod. 11, 103.Google Scholar