Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T06:59:32.980Z Has data issue: false hasContentIssue false

Language proficiency modulates L2 orthographic learning mechanism: Evidence from event-related brain potentials in overt naming

Published online by Cambridge University Press:  11 September 2023

Yang Fu
Affiliation:
School of Foreign Languages, Hangzhou City University, China Instituto Universitario de Neurociencia, Universidad de La Laguna, Spain
Beatriz Bermúdez-Margaretto
Affiliation:
Departamento de Psicología Básica, Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Salamanca, Salamanca, Spain Instituto de Integración en la Comunidad - INICO, Universidad de Salamanca, Salamanca, Spain
David Beltrán
Affiliation:
Psychology Department, Universidad Nacional de Educación a Distancia, Spain
Wang Huili*
Affiliation:
School of Foreign Languages, Hangzhou City University, China
Alberto Dominguez
Affiliation:
Instituto Universitario de Neurociencia, Universidad de La Laguna, Spain
*
Corresponding author: Wang Huili; Email: wanghl@hzcu.edu.cn

Abstract

The present study investigates bilinguals’ capacity to rapidly establish memory traces for novel word forms in a second language (L2), as a function of L2 linguistic proficiency. A group of Chinese-English bilinguals with various English proficiency levels were presented with a reading-aloud task, consisting of 16 pseudowords and 16 English words repeatedly presented across six training exposures. Behavioral and neurophysiological data were collected, and modulations in the word-length effect across repetitions were measured as an index of transition from sublexical to lexical involvement. Results revealed that higher L2 proficiency was associated with decreased word-length effect on novel words, reflected in both naming latencies and early N1 and P200 brain responses. In contrast, lower proficiency learners appeared to engage in effortful letter-to-sound decoding processes, with higher attentional allocation to the letter sequence and greater use of sublexical processing across exposures. Our findings highlight the need to tackle specific grapheme-to-phoneme skills for efficient learning of L2, particularly in populations where the L1 is nonalphabetic.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128, 466478.CrossRefGoogle ScholarPubMed
Al Otaiba, S., McMaster, K., Wanzek, J., & Zaru, M. W. (2022). What we know and need to know about literacy interventions for elementary students with reading difficulties and disabilities, including dyslexia. Reading Research Quarterly, 58, 313332.CrossRefGoogle ScholarPubMed
Alday, P. M., Schlesewsky, M., & Bornkessel-Schlesewsky, I. (2017). Electrophysiology reveals the neural dynamics of naturalistic auditory language processing: Event-related potentials reflect continuous model updates. Eneuro, 4.CrossRefGoogle ScholarPubMed
Álvarez-Cañizo, M., Suárez-Coalla, P., & Cuetos, F. (2018). The role of sublexical variables in reading fluency development among Spanish children. Journal of Child Language, 45, 858877.CrossRefGoogle ScholarPubMed
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390412.CrossRefGoogle Scholar
Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., Neely, D., Nelson, D., Simpson, G., & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39, 445459.CrossRefGoogle ScholarPubMed
Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. arXiv. arXiv:1506.04967.Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 148.CrossRefGoogle Scholar
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximalJournal of Memory and Language68, 255278.CrossRefGoogle ScholarPubMed
Bermúdez-Margaretto, B., Kopytin, G., Myachykov, A., & Shtyrov, Y. (2021). Behavioral and neurophysiological correlates of orthographic learning in L1 and L2 alphabets. In Velichkovsky, Boris M., Balaban, Pavel M., & Ushakov, Vadim L. (Eds.), Advances in cognitive research, artificial intelligence and neuroinformatics: Proceedings of the 9th International Conference on Cognitive Sciences, Intercognsci-2020, October 10-16, 2020, Moscow, Russia (pp. 345358). Springer International Publishing.Google Scholar
Bermúdez-Margaretto, B., Shtyrov, Y., Beltrán, D., Cuetos, F., & Domínguez, A. (2020). Rapid acquisition of novel written word-forms: ERP evidence. Behavioral and Brain Functions, 16, 117.CrossRefGoogle ScholarPubMed
Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143, 263292.CrossRefGoogle ScholarPubMed
Bosse, M., Chaves, N., Largy, P., & Valdois, S. (2015). Orthographic learning during reading: The role of whole-word visual processing. Journal of Research in Reading, 38, 141158.CrossRefGoogle Scholar
Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434455.Google Scholar
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80, 128.CrossRefGoogle Scholar
Chauncey, K., Holcomb, P. J., & Grainger, J. (2008). Effects of stimulus font and size on masked repetition priming: An event-related potentials (ERP) investigation. Language and Cognitive Processes, 23, 183200.CrossRefGoogle ScholarPubMed
Chung, S. C., Chen, X., Commissaire, E., Krenca, K., & Deacon, S. H. (2019). Testing the self-teaching hypothesis in second language reading. Writing Systems Research, 11, 111.CrossRefGoogle Scholar
Coltheart, M., Davelaar, E., Jonasson, J. T., & Besner, D. (1977). Access to the internal lexicon. In Dornic̆, In S. (Ed.), Attention and Performance VI (pp. 535555). Academic Press.Google Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204256.CrossRefGoogle ScholarPubMed
Comesaña, M., Sánchez-Casas, R., Soares, A. P., Pinheiro, A. P., Rauber, A., Frade, S., & Fraga, I. (2012). The interplay of phonology and orthography in visual cognate word recognition: An ERP study. Neuroscience Letters, 529, 7579.CrossRefGoogle ScholarPubMed
Davis, M. H., & Gaskell, M. G. (2009). A complementary systems account of word learning: Neural and behavioural evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 37733800.CrossRefGoogle ScholarPubMed
Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15, 254262.CrossRefGoogle ScholarPubMed
de Jong, P. F., & Share, D. L. (2007). Orthographic learning during oral and silent reading. Scientific Studies of Reading, 11, 5571.CrossRefGoogle Scholar
Dufau, S., Grainger, J., & Holcomb, P. J. (2008). An ERP investigation of location invariance in masked repetition priming. Cognitive, Affective, & Behavioral Neuroscience, 8, 222228.CrossRefGoogle ScholarPubMed
Duff, F. J., & Hulme, C. (2012). The role of children’s phonological and semantic knowledge in learning to read words. Scientific Studies of Reading, 16, 504525.CrossRefGoogle Scholar
Ehri, L. C. (2005). Learning to read words: Theory, findings, and issues. Scientific Studies of Reading, 9, 167188.CrossRefGoogle Scholar
Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood in the context of the likelihood. Entropy, 19(10), 113.CrossRefGoogle Scholar
Ginestet, E., Valdois, S., Diard, J., & Bosse, M.-L. (2020). Orthographic learning of novel words in adults: Effects of exposure and visual attention on eye movements. Journal of Cognitive Psychology, 32, 785804.CrossRefGoogle Scholar
Grainger, J., & Holcomb, P. J. (2009). Watching the word go by: On the time-course of component processes in visual word recognition. Language and Linguistics Compass, 3, 128156.CrossRefGoogle Scholar
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-python. Frontiers in Neuroscience, 7, Article 267.CrossRefGoogle ScholarPubMed
Hamada, M., & Koda, K. (2010). The role of phonological decoding in second language word-meaning inferenceApplied Linguistics31, 513531.CrossRefGoogle Scholar
Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. D. (2006). The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage, 30, 13831400.CrossRefGoogle ScholarPubMed
Haumann, N. T., Parkkonen, L., Kliuchko, M., Vuust, P., & Brattico, E. (2016). Comparing the performance of popular MEG/EEG artifact correction methods in an evoked-response studyComputational Intelligence and Neuroscience, 2016, Article 7489108.CrossRefGoogle Scholar
Hoffman, M. D., & Gelman, A. (2014). The no-u-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 5, 15931623.Google Scholar
Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysisIEEE transactions on Neural Networks10, 626634.CrossRefGoogle ScholarPubMed
Kimppa, L., Kujala, T., & Shtyrov, Y. (2016). Individual language experience modulates rapid formation of cortical memory circuits for novel words. Scientific Reports, 6, 110.CrossRefGoogle ScholarPubMed
Kong, L., Zhang, J. X., Kang, C., Du, Y., Zhang, B., & Wang, S. (2010). P200 and phonological processing in Chinese word recognition. Neuroscience Letters, 473, 3741.CrossRefGoogle ScholarPubMed
Kwok, R. K. W., Cuetos, F., Avdyli, R., & Ellis, A. W. (2017). Reading and lexicalization in opaque and transparent orthographies: Word naming and word learning in English and Spanish. Quarterly Journal of Experimental Psychology, 70, 21052129.CrossRefGoogle ScholarPubMed
Kwok, R. K. W., & Ellis, A. W. (2015). Visual word learning in skilled readers of English. Quarterly Journal of Experimental Psychology, 68, 326349.CrossRefGoogle ScholarPubMed
Kwok, R. K., & Ellis, A. W. (2014). Visual word learning in adults with dyslexia. Frontiers in Human Neuroscience, 8, Article 264.CrossRefGoogle ScholarPubMed
Landi, N., Perfetti, C. A., Bolger, D. J., Dunlap, S., & Foorman, B. R. (2006). The role of discourse context in developing word form representations: A paradoxical relation between reading and learning. Journal of Experimental Child Psychology, 94, 114133.CrossRefGoogle ScholarPubMed
Li, Y., Li, H., & Wang, M. (2020). Orthographic learning via self-teaching in Chinese: The roles of phonological recoding, context, and phonetic and semantic radicals. Journal of Experimental Child Psychology, 199, Article 104913.CrossRefGoogle ScholarPubMed
Li, Y., Wang, M., & Espinas, D. (2021). Orthographic learning through self-teaching among learners of English as a second language. Reading and Writing, 34, 12951320.CrossRefGoogle Scholar
Lindsay, S., & Gaskell, M. G. (2013). Lexical integration of novel words without sleep. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 608.Google ScholarPubMed
Maloney, E. A. (2008). Tracking the transition from sublexical to lexical processing in reading aloud: On the creation of orthographic and phonological lexical representations [Master’s thesis]. University of Waterloo.Google ScholarPubMed
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164, 177190.CrossRefGoogle ScholarPubMed
Martı́nez-Garcı́a, C., Suárez-Coalla, P., & Cuetos, F. (2019). Development of orthographic representations in Spanish children with dyslexia: The influence of previous semantic and phonological knowledge. Annals of Dyslexia, 69, 186203.CrossRefGoogle ScholarPubMed
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and power in linear mixed models. Potsdam Mind Research Repository. http://read.psych.uni-potsdam.de/index.php?option=com_content&view=article&id=144:beap&catid=11:publications&Itemid=13CrossRefGoogle Scholar
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419457.CrossRefGoogle ScholarPubMed
Mou, L. C., & Anderson, N. S. (1981). Graphemic and phonemic codings of Chinese characters in short-term retentionBulletin of the Psychonomic Society17, 255258.CrossRefGoogle Scholar
Misra, M., Guo, T., Bobb, S. C., & Kroll, J. F. (2012). When bilinguals choose a single word to speak: Electrophysiological evidence for inhibition of the native language. Journal of Memory and Language, 67, 224237.CrossRefGoogle ScholarPubMed
Namaziandost, E., Mohammed Sawalmeh, M. H., & Izadpanah Soltanabadi, M. (2020). The effects of spaced versus massed distribution instruction on EFL learners’ vocabulary recall and retention. Cogent Education, 7, Article 1792261.CrossRefGoogle Scholar
Nassaji, H. (2014). The role and importance of lower-level processes in second language reading. Language Teaching, 47, 137.CrossRefGoogle Scholar
Nation, K., Angell, P., & Castles, A. (2007). Orthographic learning via self-teaching in children learning to read English: Effects of exposure, durability, and context. Journal of Experimental Child Psychology, 96, 7184.CrossRefGoogle ScholarPubMed
Ouyang, G., Sommer, W., & Zhou, C. (2016). Reconstructing ERP amplitude effects after compensating for trial-to-trial latency jitter: A solution based on a novel application of residue iteration decomposition. International Journal of Psychophysiology, 109, 920.CrossRefGoogle ScholarPubMed
Partanen, E. J., Leminen, A., Cook, C., & Shtyrov, Y. (2018). Formation of neocortical memory circuits for unattended written word forms: Neuromagnetic evidence. Scientific Reports, 8, 110.CrossRefGoogle ScholarPubMed
Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud. Psychological Review, 114, 273.CrossRefGoogle ScholarPubMed
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/Google Scholar
Rabe, M. M., Vasishth, S., Hohenstein, S., Kliegl, R., & Schad, D. J. (2020). Hypr: An R package for hypothesis-driven contrast coding. Journal of Open Source Software, 5, Article 2134.CrossRefGoogle Scholar
Reynolds, M., Mulatti, C., & Besner, D. (2012). Reading nonwords aloud: Evidence for dynamic control in skilled readers. Psychonomic Bulletin & Review, 19, 11351141.CrossRefGoogle ScholarPubMed
Riès, S., Janssen, N., Burle, B., & Alario, F.-X. (2013). Response-locked brain dynamics of word production. PloS One, 8, Article e58197.CrossRefGoogle ScholarPubMed
Schwartz, M., Kahn-Horwitz, J., & Share, D. L. (2014). Orthographic learning and self-teaching in a bilingual and biliterate context. Journal of Experimental Child Psychology, 117, 4558.CrossRefGoogle Scholar
Seedorff, M., Oleson, J., & McMurray, B. (2019). Maybe maximal: Good enough mixed models optimize power while controlling Type I error. PsyArXiv. https://doi.org/10.31234/osf.io/xmhfrCrossRefGoogle Scholar
Share, D. L. (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition, 55, 151218.CrossRefGoogle ScholarPubMed
Share, D. L. (1999). Phonological recoding and orthographic learning: A direct test of the self-teaching hypothesis. Journal of Experimental Child Psychology, 72, 95129.CrossRefGoogle ScholarPubMed
Share, D. L. (2004). Orthographic learning at a glance: On the time course and developmental onset of self-teaching. Journal of Experimental Child Psychology, 87, 267298.CrossRefGoogle Scholar
Share, D. L. (2008). Orthographic learning, phonological recoding, and self-teaching. In Advances in child development and behavior (Vol. 36, pp. 3182). Elsevier.Google Scholar
Smith, S., & Nichols, T. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44, 8398.CrossRefGoogle ScholarPubMed
Snefjella, B., Lana, N., & Kuperman, V. (2020). How emotion is learned: Semantic learning of novel words in emotional contexts. Journal of Memory and Language, 115, Article 104171.CrossRefGoogle Scholar
Stan Development Team. (2018). Stan modeling language users guide and reference manual (Version 2.18.0). Stan Development Team. http://mc-stan.orgGoogle Scholar
Stein, M., Dierks, T., Brandeis, D., Wirth, M., Strik, W., & Koenig, T. (2006). Plasticity in the adult language system: A longitudinal electrophysiological study on second language learning. Neuroimage, 33, 774783.CrossRefGoogle Scholar
Stein, M., Federspiel, A., Koenig, T., Wirth, M., Lehmann, C., Wiest, R., Strik, W., Brandeis, D., & Dierks, T. (2009). Reduced frontal activation with increasing 2nd language proficiency. Neuropsychologia, 47, 27122720.CrossRefGoogle ScholarPubMed
Suárez-Coalla, P., Álvarez-Cañizo, M., & Cuetos, F. (2016). Orthographic learning in Spanish children. Journal of Research in Reading, 39, 292311.CrossRefGoogle Scholar
Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. Journal of Neuroscience, 30, 1435614360.CrossRefGoogle ScholarPubMed
Taylor, T. E., & Lupker, S. J. (2001). Sequential effects in naming: A time-criterion account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 117138.Google ScholarPubMed
Tucker, R., Castles, A., Laroche, A., & Deacon, S. H. (2016). The nature of orthographic learning in self-teaching: Testing the extent of transfer. Journal of Experimental Child Psychology, 145, 7994.CrossRefGoogle ScholarPubMed
Twomey, T., Duncan, K. J. K., Price, C. J., & Devlin, J. T. (2011). Top-down modulation of ventral occipito-temporal responses during visual word recognition. Neuroimage, 55, 12421251.CrossRefGoogle ScholarPubMed
van Daal, V. H., & Wass, M. (2017). First- and second-language learnability explained by orthographic depth and orthographic learning: A “naturalScandinavian experiment. Scientific Studies of Reading21, 4659.CrossRefGoogle Scholar
Van Heuven, W. J., Mandera, P., Keuleers, E., & Brysbaert, M. (2014). SUBTLEX-UK: A new and improved word frequency database for British English. Quarterly Journal of Experimental Psychology, 67, 11761190.CrossRefGoogle ScholarPubMed
van Viersen, S., Protopapas, A., Georgiou, G. K., Parrila, R., Ziaka, L., & de Jong, P. F. (2022). Lexicality effects on orthographic learning in beginning and advanced readers of Dutch: An eye-tracking study. Quarterly Journal of Experimental Psychology, 75, 11351154.CrossRefGoogle ScholarPubMed
Vergara-Martı́nez, M., Perea, M., & Leone-Fernandez, B. (2020). The time course of the lowercase advantage in visual word recognition: An ERP investigation. Neuropsychologia, 146, Article 107556.CrossRefGoogle ScholarPubMed
Wang, F., Ouyang, G., Zhou, C. S., & Wang, S. P. (2015) Re-examination of Chinese semantic processing and syntactic processing: Evidence from conventional ERPs and reconstructed ERPs by residue iteration decomposition (RIDE). PLoS ONE, 10, Article e0117324.Google ScholarPubMed
Weekes, B. S. (1997). Differential effects of number of letters on word and nonword naming latency. The Quarterly Journal of Experimental Psychology Section A, 50, 439456.CrossRefGoogle Scholar
Wegener, S., Wang, H.-C., Beyersmann, E., Nation, K., Colenbrander, D., & Castles, A. (2022). The effects of spacing and massing on children’s orthographic learning. Journal of Experimental Child Psychology, 214, Article 105309.CrossRefGoogle ScholarPubMed
Wu, Y., Mo, D., Tsang, Y.-K., & Chen, H.-C. (2012). ERPs reveal sub-lexical processing in Chinese character recognition. Neuroscience Letters, 514, 164168.CrossRefGoogle ScholarPubMed
Supplementary material: File

Fu et al. supplementary material

Fu et al. supplementary material

Download Fu et al. supplementary material(File)
File 18.6 MB