Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T19:59:41.965Z Has data issue: false hasContentIssue false

The Origin and Early Evolution of the Craniata

Published online by Cambridge University Press:  17 July 2017

Kevin J. Peterson*
Affiliation:
Department of Earth and Space Sciences and IGPP Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles, California 90024-1567

Extract

The origin of the Craniata (hagfish + Vertebrata [Vertebrata = lamprey + Gnathostoma]—Janvier, 1981), one of the three subphyla of the Phylum Chordata, has generated more controversy in terms of numbers of likely ancestors than the origin of any other metazoan group. The primary difficulty with the origin of craniates, as opposed to the origin of birds, for example, is the bauplan dichotomy that separates craniates from all other “invertebrates.” This dichotomy results in the almost equal plausibility of deriving craniates from any “invertebrate” ancestor. The first attempt at trying to understand the bauplan differences between “invertebrates” and craniates was by Geoffroy St. Hilaire in 1822, who envisioned craniates as arthropods lying on their backs. Since then, many bilaterian phyla have been hypothesized as either direct ancestors or sister groups to the craniates with some recent notable examples being: arthropods (Raw, 1960); nemertines (Willmer, 1975); molluscs (Sillman, 1960; Løvtrup, 1977); urochordates (Jefferies, 1986); and cephalochordates (Gans and Northcutt, 1983).

Type
Research Article
Copyright
Copyright © 1994 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akam, M. 1989. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell, 57: 347349.CrossRefGoogle ScholarPubMed
Aldridge, R. J., Briggs, D. E. G., Clarkson, E. N. K., and Smith, M. P. 1986. The affinities of conodonts—new evidence from the Carboniferous of Edinburgh, Scotland. Lethaia, 19: 279291.CrossRefGoogle Scholar
Aldridge, R. J., Briggs, D. E. G., Smith, M. P., Clarkson, E. N. K., and Clark, D. L. 1993. The anatomy of conodonts. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 340: 405421.Google Scholar
Aldridge, R. J., and Theron, J. N. 1993. Conodonts with preserved soft tissue from a new Ordovician Konservat-Lagerstätte . Journal of Micropalaeontology, 12: 113117.CrossRefGoogle Scholar
Andres, D. 1988. Strukturen, Apparate und Phylogenie primitiver Conodonten. Palaeontographica A, 200: 105152.Google Scholar
Ax, P. 1987. The Phylogenetic System: The Systematization of Organisms on the Basis of their Phylogenesis. Wiley, Chichester, 340 p.Google Scholar
Bartels, J. L., Murtha, M. T., and Ruddle, F. H. 1993. Multiple Hox/HOM-class homeoboxes in Platyhelminthes. Molecular Phylogenetics and Evolution, 2: 143151.CrossRefGoogle ScholarPubMed
Bengtson, S. 1976. The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia, 9:185206.CrossRefGoogle Scholar
Bengtson, S. 1983a. The early history of the Conodonta. Fossils and Strata, 15:519.CrossRefGoogle Scholar
Bengtson, S. 1983b. A functional model for the conodont apparatus. Lethaia, 16:38.CrossRefGoogle Scholar
Benton, M.J. 1990. Vertebrate Palaeontology. Unwin Hyman, London, 377 p.Google Scholar
Boncinelli, E., Simeone, A., Acampora, D., and Mavilio, F. 1991. HOX gene activation by retinoic acid. Trends in Genetics, 7:329334.CrossRefGoogle ScholarPubMed
Bone, Q. 1972. The origin of chordates. Carolina Biological Supply Company, Burlington, North Carolina, 16 p.Google Scholar
Briggs, D. E. G., and Fortey, R. A. 1982. The cuticle of the aglaspidid arthropods, a redherring in the early history of the vertebrates. Lethaia, 15: 2529.Google Scholar
Briggs, D. E. G., and Kear, A.J. 1994. Decay of Branchiostoma: implications for soft-tissue preservation in conodonts and other primitive chordates. Lethaia, 26: 275287.CrossRefGoogle Scholar
Briggs, D. E. G., Clarkson, E. N. K., and Aldridge, R. J. 1983. The conodont animal. Lethaia, 16: 114.CrossRefGoogle Scholar
Brusca, R. C., and Brusca, G. J. 1990. Invertebrates. Sinauer Associates, Sunderland, Massachusetts, 922 p.Google Scholar
Budd, G. 1993. A Cambrian gilled lobopod from Greenland. Nature, 364: 709711.CrossRefGoogle Scholar
Carlson, S. J., and Fisher, D. C. 1981. Microstructural and morphologic analysis of a carpoid aulacophore. Abstracts with Programs of the Geological Society of America, 13 (7): 422.Google Scholar
Carrasco, A. E., McGinnis, W., Gehring, W. J., and De Robertis, E. 1984. Cloning of an X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell, 37: 409414.CrossRefGoogle Scholar
Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. W.H. Freeman and Company, New York, 698 p.Google Scholar
Cartwright, P., Dick, M., and Buss, L. W. 1993. HOM/Hox type homeoboxes in the chelicerate Limulus polyphemus . Molecular Phylogenetics and Evolution, 2: 185192.CrossRefGoogle ScholarPubMed
Chen, J., Ramsköld, L., and Zhou, G. 1994. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science, 264: 13041308.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1979. The animals of the Burgess Shale. Scientific American, 241: 122133.CrossRefGoogle Scholar
Cripps, A. P. 1990. A new stem craniate from the Ordovician of Morocco and the search for the sister group of the Craniata. Zoological Journal of the Linnean Society, 100: 2771.CrossRefGoogle Scholar
Cripps, A. P. 1991. A cladistic analysis of the cornutes (stem chordates). Zoological Journal of the Linnean Society, 102: 333366.CrossRefGoogle Scholar
De Robertis, E. M., Oliver, G., and Wright, C. V. E. 1990. Homeobox genes and the vertebrate body plan. Scientific American, July, p. 4652.Google ScholarPubMed
Dollé, P., Izpisua-Belmonte, J.-C., Falkenstein, H., Runucci, A., and Duboule, D. 1989. Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature, 342: 767772.CrossRefGoogle ScholarPubMed
Donoghue, M.J., Doyle, J.A., Gauthier, J., Kluge, A.G., and Rowe, T. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics, 20: 431460.CrossRefGoogle Scholar
Dzik, J. 1986. Chordate affinities of conodonts, p. 240254. In Hoffman, A. and Nitecki, M. H. (eds.), Problematic Fossil Taxa. Oxford University Press, New York.Google Scholar
Eaton, T.H. 1970. The stem-tail problem and the ancestry of chordates. Journal of Paleontology, 44: 969979.Google Scholar
Eldredge, N. 1979. Cladism and common sense, p. 165198. In Cracraft, J. and Eldredge, N. (eds.), Phylogenetic Analysis and Paleontology. Columbia University Press, New York.CrossRefGoogle Scholar
Fisher, D. C. 1982. Stylophoran skeletal crystallography: testing the calcichordate theory of vertebrate origins. Abstracts with Programs of the Geological Society of America, 14 (7): 488.Google Scholar
Fisher, D. C. 1993. Life orientation of mitrate stylophorans and its implications for the calcichordate theory of vertebrate origins. Abstracts with Programs of the Geological Society of America, 25 (6): A105.Google Scholar
Fisher, D. C., Cox, R. S. 1987. Phylogenetic applications of echinoderm skeletal crystallography. Abstracts with Programs of the Geological Society of America, 19 (7): 663.Google Scholar
Forey, P. L. 1984. Yet more reflections on agnathan-gnathostome relationships. Journal of Vertebrate Paleontology, 4: 330343.CrossRefGoogle Scholar
Forey, P. L., and Janvier, P. 1993. Agnathans and the origin of jawed vertebrates. Nature, 361: 129134.CrossRefGoogle Scholar
Gans, C. 1989. Stages in the origins of vertebrates: analysis by means of scenarios. Biological Reviews of the Cambridge Philosophical Society, 64: 221268.CrossRefGoogle ScholarPubMed
Gans, C., and Northcutt, R. G. 1983. Neural crest and the origin of vertebrates: a new head. Science, 220: 268274.CrossRefGoogle ScholarPubMed
Gaunt, S. J. 1991. Expression patterns of mouse Hox genes: clues to an understanding of developmental and evolutionary strategies. Bioessays, 13: 505513.CrossRefGoogle Scholar
Gauthier, J., Kluge, A.G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics, 4: 105209.CrossRefGoogle ScholarPubMed
Gee, H. 1989. A backbone for vertebrates. Nature, 340: 596597.CrossRefGoogle Scholar
Gehring, W. J. 1987. Homeoboxes in the study of development. Science, 236: 12451251.CrossRefGoogle Scholar
Gilbert, S.F. 1991. Developmental Biology (3rd ed.). Sinauer Associates, Sunderland, Massachusetts, 891 p.Google Scholar
Hildebrand, M. 1988. Analysis of Vertebrate Structure (3rd ed.) John Wiley and Sons, New York, 701 p.Google Scholar
Holland, P. W. H. 1992. Homeobox genes in vertebrate evolution. Bioessays, 14: 267273.CrossRefGoogle ScholarPubMed
Holland, P. W. H., Hacker, A. M., and Williams, N. A. 1991. A molecular analysis of the phylogenetic affinities of Saccoglossus cambrensis Brambell & Cole (Hemichordata). Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 332: 185189.Google ScholarPubMed
Holland, P. W. H., Holland, L. Z., Williams, N. A., and Holland, N. D. 1992a. An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development, 116: 653661.CrossRefGoogle ScholarPubMed
Holland, P. W. H., Ingham, P., and Krauss, S. 1992b. Mice and flies head to head. Nature, 358: 627628.CrossRefGoogle ScholarPubMed
Huelsenbeck, J.P. 1991. When are fossils better than extant taxa in phylogenetic analysis? Systematic Zoology, 40: 458469.CrossRefGoogle Scholar
Janvier, P. 1981. The phylogeny of the Craniata, with particular reference to the significance of fossil “agnathans.” Journal of Vertebrate Paleontology, 12: 121159.CrossRefGoogle Scholar
Jefferies, R. P. S. 1979. The origin of chordates—a methodological essay, p. 443477. In House, M. R. (ed.), The Origin of Major Invertebrates Groups. Academic Press, London.Google Scholar
Jefferies, R. P. S. 1986. The Ancestry of the Vertebrates. British Museum (Natural History), London, 376 p.Google Scholar
Jefferies, R. P. S. 1990. The solute Dendrocystoides scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms. Palaeontology, 33: 631679.Google Scholar
Jollie, M. 1982. What are the ‘Calcichordata’? and the larger question of the origin of chordates. Zoological Journal of the Linnean Society, 75: 167188.CrossRefGoogle Scholar
Kemp, A. 1990. Involvement of the neural crest in the development of the Australian lungfish, Neoceratodus forsteri (Krefft 1870). Memoirs of the Queensland Museum, 28: 101102.Google Scholar
Kemp, A. 1992. Letter to the Editor. Ichthyolith Issues, 11: 1011.Google Scholar
Kemp, A. 1993. Letter to the Editor. Ichthyolith Issues, 12: 1921.Google Scholar
Kolata, D.R., and Jollie, M. 1982. Anomalocystid mitrates (Stylophora, Echinodermata) from the Champlainian (Middle Ordovician) Guttenberg Formation of the upper Mississippi valley region. Journal of Paleontology, 56: 631653.Google Scholar
Kolata, D.R., Frest, T.J., and Mapes, R.H. 1991. The youngest carpoid: occurrence, affinities, and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. Journal of Paleontology, 65: 844855.CrossRefGoogle Scholar
Krejsa, R.J. 1993. Letter to the editor. Ichthyolith Issues, 12: 1718.Google Scholar
Krumlauf, R. 1992. Evolution of the vertebrate Hox homeobox genes. Bioessays, 14: 245252.CrossRefGoogle ScholarPubMed
Lacalli, T.C. 1994. Apical organs, epithelial domains, and the origin of the chordate central nervous system. American Zoologist (in press).CrossRefGoogle Scholar
Lacalli, T.C., Holland, N.D., and West, J.E. 1994. Landmarks in the anterior central nervous system of amphioxus larvae. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences (in press).Google Scholar
Lake, J. A. 1990. Origin of the Metazoa. Proceedings of the National Academy of Sciences, USA, 87: 763766.CrossRefGoogle ScholarPubMed
Langille, R. M., and Hall, B. K. 1989. Developmental processes, developmental sequences and early vertebrate phylogeny. Biological Reviews of the Cambridge Philosophical Society, 64: 7391.CrossRefGoogle ScholarPubMed
Lund, R. 1992. Letter to the Editor. Ichthyolith Issues, 11: 1112.Google Scholar
Løvtrup, S. 1977. The Phylogeny of Vertebrata. John Wiley & Sons, London, 330 p.Google Scholar
Maisey, J. G. 1986. Heads and tails: a chordate phylogeny. Cladistics, 2: 201256.CrossRefGoogle ScholarPubMed
McGinnis, W., and Krumlauf, R. 1992. Homeobox genes and axial patterning. Cell, 68: 283302.CrossRefGoogle ScholarPubMed
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J. 1985. A Silurian soft-bodied biota. Science, 228: 715717.CrossRefGoogle ScholarPubMed
Northcutt, R. G., and Gans, C. 1983. The genesis of neural crest and epidermal placodes: A reinterpretation of vertebrate origins. The Quarterly Review of Biology, 58: 128.CrossRefGoogle ScholarPubMed
Parsley, R. L. 1988. Feeding and respiratory strategies in Stylophora, p. 347361. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Review of Ecology and Systematics, 12: 195223.CrossRefGoogle Scholar
Patterson, C. 1987. Introduction, p. 122. In Patterson, C. (ed.), Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge University Press, Cambridge.Google Scholar
Paul, C.R.C. 1977. Evolution of primitive echinoderms, p. 123158. In Hallam, A. (ed.), Patterns of Evolution. Elsevier, Amsterdam.Google Scholar
Paul, C.R.C. 1990. Thereby hangs a tail. Nature, 348: 680681.CrossRefGoogle Scholar
Pendleton, J. W., Nagai, B. K., Murtha, M. T., and Ruddle, F. H. 1993. Expansion of the Hox gene family and the evolution of chordates. Proceedings of the National Academy of Sciences, USA, 90: 63006304.CrossRefGoogle ScholarPubMed
Philip, G. M. 1979. Carpoids—echinoderms or chordates? Biological Reviews of the Cambridge Philosophical Society, 54:439471.CrossRefGoogle Scholar
Raw, F. 1960. Outline of a theory of origin of the vertebrates. Journal of Paleontology, 34: 497539.Google Scholar
Repetski, J. E. 1978. A fish from the Upper Cambrian of North America. Science, 200: 529531.CrossRefGoogle ScholarPubMed
Sansom, I., and Smith, M. P. 1993. Letter to the editor. Ichthyolith Issues, 12: 1819.Google Scholar
Sansom, I., Smith., M. P., and Armstrong, H. A. 1991. The earliest occurrence of neural crestderived tissue and the presence of cellular bone in conodonts. Canadian Paleontology Conference: Program and Abstracts, 1: 74.Google Scholar
Sansom, I., Smith, M. P., Armstrong, H. A., and Smith, M. M. 1992. Presence of the earliest vertebrate hard tissues in conodonts. Science, 256: 13081311.CrossRefGoogle ScholarPubMed
Sansom, I., Smith, M. P., Armstrong, H. A., and Smith, M. M. 1994. Dentine in conodonts. Nature, 368: 591.CrossRefGoogle Scholar
Schaeffer, B. 1987. Deuterostome monophyly and phytogeny, p. 179235. In Hecht, M. K., Wallace, B., and Prance, G. T. (eds.), Evolutionary Biology. Plenum, New York.CrossRefGoogle Scholar
Schram, F. R. 1991. Cladistic analysis of metazoan phyla and the placement of fossil problematica, p. 3546. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Sillman, L. R. 1960. The origin of the vertebrates. Journal of Paleontology, 34: 540544.Google Scholar
Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A., and Boncinelli, E. 1992. Nested expression domains of four homeobox genes in developing rostral brain. Nature, 358: 687690.CrossRefGoogle ScholarPubMed
Smith, M. M., and Hall, B. K. 1990. Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biological Reviews of the Cambridge Philosophical Society, 65: 277373.CrossRefGoogle ScholarPubMed
Smith, M. P., Briggs, D. E. G., and Aldridge, R. J. 1987. A conodont animal from the lower Silurian of Wisconsin, USA, and the apparatus architecture of panderodontid conodonts, p. 91104. In Aldridge, R. J. (ed.), Palaeobiology of Conodonts. Ellis Horwood Limited, Chichester.Google Scholar
Stock, D. W., and Whitt, G. S. 1992. Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. Science, 257: 787789.CrossRefGoogle Scholar
Szaniawski, H. 1982. Chaetognath grasping spines recognized among Cambrian protoconodonts. Journal of Paleontology, 56: 806810.Google Scholar
Szaniawski, H. 1987. Preliminary structural comparisons of protoconodont, paraconodont, and euconodont elements, p. 3547. In Aldridge, R. J. (ed.), Palaeobiology of Conodonts. Ellis Horwood, Chichester.Google Scholar
Szaniawski, H., and Bengtson, S. 1993. Origin of euconodont elements. Journal of Paleontology, 67: 640654.CrossRefGoogle Scholar
Tattersall, I., and Eldredge, N. 1977. Fact, theory, and fantasy in human paleontology. American Scientist, 65: 204211.Google ScholarPubMed
Telford, M. J., and Holland, P. W. H. 1993. The phylogenetic affinities of the chaetognaths: a molecular analysis. Molecular Biology and Evolution, 10: 660676.Google ScholarPubMed
Thomson, K. S. 1987. Spinal discord. Nature, 327: 196197.CrossRefGoogle Scholar
Turbeville, J.M., Schulz, J.R., and Raff, R.A. 1994. Deuterostome phylogeny and the sister group of chordates: evidence from molecules and morphology. Molecular Biology and Evolution (in press).Google Scholar
Ubaghs, G. 1967. Stylophora, p. S495S565. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas Press, Kansas and New York.Google Scholar
Ubaghs, G. 1975. Early Paleozoic echinoderms. Annual Reviews of Earth and Planetary Sciences, 3: 7998.CrossRefGoogle Scholar
Van Der Brugghen, W., and Janvier, P. 1993. Denticles in thelodonts. Nature, 364: 107.CrossRefGoogle Scholar
Wada, H., and Satoh, N. 1994. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequence of 18S rRNA. Proceedings of the National Academy of Sciences, USA, 91: 18011804.CrossRefGoogle Scholar
Willmer, E. N. 1975. The possible contribution of nemertines to the problem of the phylogeny of the protochordates. Symposia of the Zoological Society of London, 36: 319345.Google Scholar
Wilson, M. V. H., and Caldwell, M. W. 1993. New Silurian and Devonian fork-tailed “thelodonts” are jawless vertebrates with stomachs and deep bodies. Nature, 361: 442444.CrossRefGoogle Scholar
Yokouchi, Y. Sasaki, H., and Kuroiwa, A. 1991. Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature, 353: 443445.CrossRefGoogle ScholarPubMed