Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T04:48:29.777Z Has data issue: false hasContentIssue false

Very fast germination: additional records and relationship to embryo size and phylogeny

Published online by Cambridge University Press:  28 March 2014

Robert F. Parsons*
Affiliation:
Department of Botany, La Trobe University, Bundoora, Victoria3086, Australia
Filip Vandelook
Affiliation:
Botanic Garden Meise, Nieuwelaan 38, 1860Meise, Belgium
Steven B. Janssens
Affiliation:
Botanic Garden Meise, Nieuwelaan 38, 1860Meise, Belgium
*
*Correspondence Email: r.parsons@latrobe.edu.au

Abstract

Recently, a list has been published of angiosperms capable of germinating in less than 24 h (‘very fast germination’). Here, we add three families and 23 species to that list. The main extra families complement ecological groups already recognized – the Cactaceae into the aridity-adapted group and the Tamaricaceae into the floodplain-adapted group. These amended findings on very fast germination (VFG) are integrated into the recent work on the functional ecology of embryo size. They confirm the important connection between germination speed and embryo to seed ratio. Plotting the plant orders containing VFG species on a phylogenetic tree shows that VFG has evolved multiple times throughout angiosperm history, including at least three times within the Caryophyllales. The fact that species with VFG are mainly restricted to advanced clades shows that VFG is a derived trait that evolved as an adaptation to either arid, saline or floodplain habitats.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abts, W., Vissers, C., Vandenbussche, B. and De Proft, M.M.P. (2013) Study of ethylene kinetics during and after germination of sugar beet (Beta vulgaris L.) seeds and fruits. Seed Science Research 23, 205210.Google Scholar
Alvarez-Aguirre, M.G. and Montana, C. (1997) Germinacion y supervivencia de cinco especies de cactaceas del Valle de Tehuacan. Acta Botanica Mexicana 40, 4358.Google Scholar
Angiosperm Phylogeny Group III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161, 105121.CrossRefGoogle Scholar
Barcenas-Arguello, M.L., Lopez-Mata, L. and Terrazas, T. (2013) Germinacion de tres especies de Cephalocereus (Cactaceae) endemicas del Istmo de Tehuantepec, Mexico. Polibotanica 36, 105116.Google Scholar
Bill, H.-C., Spahn, P., Reich, M. and Plachter, H. (1997) Bestandsveränderungen und Besiedlungsdynamik der Deutschen Tamariske, Myricaria germanica (L.) Desv. Zeitschrift für Okologie und Naturschutz 6, 137150.Google Scholar
Bradford, K.J., Tarquis, A.M. and Duran, J.M. (1993) A population-based threshold model describing the relationship between germination rates and seed deterioration. Journal of Experimental Botany 44, 12251234.Google Scholar
Chen, F.-Q. and Xie, Z.-Q. (2007) Reproductive allocation, seed dispersal and germination of Myricaria laxiflora . Plant Ecology 191, 6775.CrossRefGoogle Scholar
Cronquist, A. (1981) An integrated system of classification of flowering plants. New York, Columbia University Press.Google Scholar
Forbis, T.A., Floyd, S.K. and De Queiroz, A. (2002) The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution 56, 21122125.Google ScholarPubMed
Gaskin, J.F. (2003) Tamaricaceae. pp. 363368 in Kubitzki, K. (Ed.) The families and genera of vascular plants, vol. 5. Berlin, Springer.Google Scholar
Huang, Z.Y. and Gutterman, Y. (1999) Water absorption by mucilaginous achenes of Artemisia monosperma: floating and germination as affected by salt concentrations. Israel Journal of Plant Sciences 47, 2734.CrossRefGoogle Scholar
Hultine, K. and Dudley, T. (2013) Tamarix: from organism to landscape. pp. 149167 in Sher, A.; Quigley, M.F. (Eds) Tamarix. A case study of ecological change in the American West. New York, Oxford University Press.Google Scholar
Iglesias-Fernandez, R., Matilla, A.J. and Pulgar, I. (2007) Ripe fruits of Sisymbrium officinale L. contain heterogeneous endospermic seeds with different germination rates. Seed Science and Biotechnology 1, 1824.Google Scholar
Lener, F.P. (2011) Etablierung und Entwicklung der Deutschen Tamariske (Myricaria germanica). Diplomarbeit, Universitat Wien.Google Scholar
Liu, H.L., Zhang, L.W. and Yin, L.K. (2013) Effects of temperature, dry storage and burial on dormancy and germination of seeds of 13 desert plant species from sand dunes in the Gurbantunggut Desert, northwest China. Arid Land Research and Management 27, 6578.CrossRefGoogle Scholar
Liu, Q.W., Hao, P. and Tan, Z.G. (2011) Effect of stand age and individual growth on seed germination of Populus euphratica in the Ejina Oasis, China. Forestry Studies in China 13, 183188.CrossRefGoogle Scholar
Parsons, R.F. (2012) Incidence and ecology of very fast germination. Seed Science Research 22, 161167.CrossRefGoogle Scholar
Seal, C.E., Flores, J., Ceroni Stuva, A., Davila Aranda, P., Leon-Lobos, P., Ortega-Baes, P., Galindez, G., Aparicio-Gonzalez, M.A., Castro Cepero, V., Daws, M.I., et al. (2009) The cactus seed biology database. Kew, Royal Botanic Gardens.Google Scholar
Stebbins, G.L. (1974) Flowering plants. Evolution above the species level. Cambridge, MA, The Belknap Press of Harvard University Press.Google Scholar
Steckel, L.E., Sprague, C.L. and Stoller, E.W. (2004) Temperature effects on germination of nine Amaranthus species. Weed Science 52, 217221.CrossRefGoogle Scholar
Stevens, P.F. (2001) Angiosperm phylogeny website. Version 12. Available at http://www.mobot.org/MOBOT/research/APweb/ (accessed January 2014).Google Scholar
Vandelook, F., Janssens, S.B. and Probert, R.J. (2012) Relative embryo length as an adaptation to habitat and life cycle in Apiaceae. New Phytologist 195, 479487.Google Scholar
Wang, L., Huang, Z.Y. and Baskin, C.C. (2008) Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy. Annals of Botany 102, 757769.CrossRefGoogle ScholarPubMed
Yan, C., Wei, Y. and Yang, M. (2011) Comparative germination of Tamarix ramosissima spring and summer seeds. EXCLI Journal 10, 198204.Google Scholar
Yao, S., Chen, S. and Zhao, J. (2010) Effect of three salts on germination and seedling survival of dimorphic seeds of Chenopodium album . Botany 88, 821828.CrossRefGoogle Scholar