Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T19:12:45.277Z Has data issue: false hasContentIssue false

Slime cells on the surface of Eragrostis seeds maintain a level of moisture around the grain to enhance germination

Published online by Cambridge University Press:  01 March 2009

Agnieszka Kreitschitz
Affiliation:
Institute of Plant Biology, University of Wrocław, Kanonia 6/8, 50-328Wrocław, Poland
Zerihun Tadele
Affiliation:
Institute of Plant Sciences, University of Bern, Altenbergrain 13, 3013Bern, Switzerland
Edyta M. Gola*
Affiliation:
Institute of Plant Biology, University of Wrocław, Kanonia 6/8, 50-328Wrocław, Poland
*
*Correspondence Fax: +4871 375 4118 Email: edytag@biol.uni.wroc.pl

Abstract

Eragrostis is a cosmopolitan genus of the family Poaceae. Several wild species, including E. pilosa (L.) Beauv., are harvested for food, but the only cultivated crop-species is tef [E. tef (Zucc.) Trotter]. Despite its importance as a staple food and its plasticity to diverse environmental conditions, little is known about the structural and physiological strategies that adapt tef seeds to endure diverse and variable moisture regimes. Here, we report the presence of slime cells, a type of modified epidermal cell, covering the fruit of tef and its wild relative, E. pilosa. The slime produced by Eragrostis belongs to the ‘true’ slime type, since it is exclusively composed of pectins. Pectin forms uniform layers on the cell wall inner surface, which are confined by a thin cellulose layer to prevent release into the cell lumen. In the presence of water, pectins quickly hydrate, causing swelling of the slime cells. This is followed by their detachment, which may be controlled by a thin cuticle layer on the fruit surface. The ability of slime to absorb and maintain moisture around the grain is thought to be an adaptive feature for Eragrostis growing in dry habitats. This retention of water by slime may create conditions that are suitable for rapid germination.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeysekera, R.M. and Willison, J.H.M. (1988) Development of helicoidal texture in the prerelease mucilage of quince (Cydonia oblonga) seed epidermis. Canadian Journal of Botany 66, 460467.CrossRefGoogle Scholar
Assefa, K., Tefera, H., Merker, A., Kefyalew, T. and Hundera, F. (2001) Quantitative trait diversity in tef [Eragrostis tef (Zucc.) Trotter] germplasm from Central and Northern Ethiopia. Genetic Resources and Crop Evolution 48, 5361.CrossRefGoogle Scholar
Bayer, R.J. (1998) New perspectives into the evolution of polyploid complexes. pp. 359373in van Raamsdonk, L.W.D.; den Nijs, J.C.M. (Eds) Plant evolution in man-made habitats. Proceedings of the VIIth International Symposium of the International Organization of Plant Biosystematists. Amsterdam, The Netherlands, Hugo de Vries Laboratory.Google Scholar
Bekele, E., Fido, R.J., Tatham, A.S. and Shewry, P.R. (1995) Heterogeneity and polymorphism of seed proteins in tef (Eragrotis tef). Hereditas 122, 6772.CrossRefGoogle Scholar
Boechat, S. de C. and Longhi-Wagner, H.M. (2000) Padrões de distribuição geográfica dos táxons brasileiros de Eragrostis (Poaceae, Chloridoideae). Revista Brasileira de Botânica 23, 177194.Google Scholar
Boechat, S. de C. and Longhi-Wagner, H.M. (2003) Análise do fruto em espécies Eragrostis Wolf (Poaceae). Iheringia, Série Botanica 58, 131168.Google Scholar
Braune, W., Leman, A. and Taubert, H. (1975) Praktikum z anatomii roślin. Warszawa, Państwowe Wydawnictwo Naukowe.Google Scholar
Cafferty, S., Jarvis, C.E. and Turland, N.J. (2000) Typification of Linnaean plant names in the Poaceae (Gramineae). Taxon 49, 239260.Google Scholar
Conert, H.J. (1992) Eragrostoideae. pp. 75120in Hegi, G. (Ed.) Ilustierte Flora von Mittel-Europa. Bd. I, Vol. 3. Spermatophyta: Angiospermae: Monocotyledones 1(2) Poaceae. Berlin, Parey Buchverlag.Google Scholar
Fahn, A. and Werker, E. (1972) Anatomical mechanisms of seed dispersal. pp. 151221in Kozlowski, T.T. (Ed.) Seed biology. Volume I. Importance, development and germination. New York, Academic Press.Google Scholar
Frey-Wyssling, A. (1959) Die Pflanzliche Zellwand. Berlin, Springer Verlag.CrossRefGoogle Scholar
Gerlach, D. (1972) Zarys mikrotechniki botanicznej. Warszawa, Państwowe Wydawnictwo Rolne i Leśne.Google Scholar
Gregory, M. and Baas, P. (1989) A survey of mucilage cells in vegetative organs of the dicotyledons. Israel Journal of Botany 38, 125174.Google Scholar
Grubert, M. (1974) Studies on the distribution of myxospermy among seeds and fruits of Angiospermae and its ecological importance. Acta Biologica Venezuelica 8, 315551.Google Scholar
Gutterman, Y. (1994) Strategies of seed dispersal and germination in plants inhabiting deserts. Botanical Review 60, 373425.CrossRefGoogle Scholar
Gutterman, Y., Witztum, A. and Evenari, M. (1967) Seed dispersal and germination in Blepharis persica (Burm.) Kuntze. Israel Journal of Botany 16, 213234.Google Scholar
Gutterman, Y., Witztum, A. and Heydecker, W. (1973) Studies on the surfaces of desert plant seeds. II. Ecological adaptations of the seeds of Blepharis persica. Annals of Botany 37, 10511055.CrossRefGoogle Scholar
Hanke, D.E. and Northcote, D.H. (1975) Molecular visualization of pectin and DNA by ruthenium red. Biopolymers 14, 117.CrossRefGoogle ScholarPubMed
Huang, Z., Gutterman, Y. and Hu, Z. (2000) Structure and function of mucilaginous achenes of Artemisia monosperma inhabiting the Negev desert of Israel. Israel Journal of Plant Sciences 48, 255266.CrossRefGoogle Scholar
Huang, Z., Gutterman, Y. and Osborne, D.J. (2004) Value of the mucilaginous pellicle to seeds of the sand-stabilizing desert woody shrub Artemisia sphaerocephala (Asteraceae). Trees 18, 669676.CrossRefGoogle Scholar
Ingram, A.L. and Doyle, J.J. (2003) The origin and evolution of Eragrostis tef (Poaceae) and related polyploids: evidence from nuclear waxy and plastid rps16. American Journal of Botany 90, 116122.CrossRefGoogle ScholarPubMed
Jackman, N.D. (1999) Tef and finger millet: archaeobotanical studies of two indigenous East African cereals. MA Thesis, Simon Fraser University, Canada.Google Scholar
Ketema, S. (1997) Tef. Eragrostis tef (Zucc.) Trotter. Promoting the conservation and use of underutilized and neglected crops. Vol. 12. Gatersleben, Institute of Plant Genetics and Crop Plant Research; Rome, International Plant Genetic Resources Institute.Google Scholar
Kreitschitz, A. and Vallès, J. (2007) Achene morphology and slime structure in some taxa of Artemisia L. and Neopallasia L. (Asteraceae). Flora 202, 570580.CrossRefGoogle Scholar
Mouradian, L.G. (1995) Comparative morpho-anatomical investigation of the achenes of Filifolium Kitam. and related genera. pp. 4149in Hind, D.J.N.; Jeffrey, C.; Pope, G.V. (Eds) Advances in Compositae. Systematics. Kew, Royal Botanic Gardens.Google Scholar
Mühlethaler, K. (1950) The structure of plant slimes. Experimental Cell Research 1, 341350.CrossRefGoogle Scholar
O'Brien, T.P. and McCully, M.E. (1981) The study of plant structure principles and selected methods. Melbourne, Australia, Termarcarphi Pty. Ltd.Google Scholar
Penfield, S., Meissner, R.C., Shoue, D.A., Carpita, N.C. and Bevan, M.W. (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13, 27772791.CrossRefGoogle ScholarPubMed
Ruzin, S.E. (1999) Plant microtechnique and microscopy. New York, Oxford University Press.Google Scholar
Tatham, A.S., Fido, R.J., Moore, C.M., Kasarda, D.D., Kuzmicky, D.D., Keen, J.N. and Shewry, P.R. (1996) Characterisation of the major prolamins of tef (Eragrostis tef) and finger millet (Eleusine coracana). Journal of Cereal Science 24, 6571.CrossRefGoogle Scholar
Tefera, H. and Peat, W.E. (1997) Genetics of grain yield and other agronomic characters in tef (Eragrostis tef Zucc. Trotter). II. The triple test cross. Euphytica 96, 193202.CrossRefGoogle Scholar
Tefera, H., Assefa, K., Hundera, F., Kefyalew, T. and Teferra, T. (2003) Heritability and genetic advance in recombinant inbred lines of tef (Eragrostis tef). Euphytica 131, 9196.CrossRefGoogle Scholar
Tutin, T.G. (1974) Eragrostis. pp. 256258in Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentino, D.H.; Walters, S.M.; Webb, D.A. (Eds) Flora Europaea. Volume 5. Alismataceae to Orchidaceae (Monocotyledones). Cambridge, Cambridge University Press.Google Scholar
Vaughan, J.G., Whitehouse, F.L.S. and Whitehouse, J.M. (1971) Seed structure and the taxonomy of the Cruciferae. Botanical Journal of the Linnean Society 64, 383409.CrossRefGoogle Scholar
Western, T.L., Debra, J.S. and Haughn, G.W. (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiology 122, 345355.CrossRefGoogle ScholarPubMed
Young, J.A. and Evans, R.A. (1973) Mucilaginous seed coats. Weed Science 21, 5254.CrossRefGoogle Scholar