Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-21T18:52:50.809Z Has data issue: false hasContentIssue false

Reduced embryo sensitivity to abscisic acid in a sprouting-susceptible sorghum (Sorghum bicolor) variety is associated with altered ABA signalling

Published online by Cambridge University Press:  01 June 2007

Nicolás Gualano
Affiliation:
Cátedra de Cerealicultura-IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Av. San Martín 4453 (C1417DSE), Buenos, Aires, Argentina
Fernando Carrari
Affiliation:
INTA Castelar, CONICET, Argentina
María Verónica Rodríguez
Affiliation:
Cátedra de Cerealicultura-IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Av. San Martín 4453 (C1417DSE), Buenos, Aires, Argentina
Laura Pérez-Flores
Affiliation:
Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, D.F., México
Rodolfo Sánchez
Affiliation:
Cátedra de Fisiología Vegetal, IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
Norberto Iusem
Affiliation:
Laboratorio de Fisiología y Biología Molecular, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
Roberto Benech-Arnold*
Affiliation:
Cátedra de Cerealicultura-IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Av. San Martín 4453 (C1417DSE), Buenos, Aires, Argentina
*
*Correspondence Fax: +54 11 4524 8039 (ext. 33) Email: benech@ifeva.edu.ar

Abstract

In the work reported in this paper, we attempted to elucidate the nature of the different abscisic acid (ABA) sensitivities presented by developing embryos from sorghum [Sorghum bicolor (L.) Moench] lines with contrasting pre-harvest sprouting (PHS) behaviour (Redland B2, susceptible; IS 9530, resistant). We explored two different hypotheses for a possible mechanism: (1) a different functionality of the ABA signalling pathway, and (2) a different rate of ABA degradation/conjugation in the apoplast of embryos from these genotypes. To assess the first possibility, we used an ABA-responsive gene (Rab17) as a reporter of changes in endogenous ABA content, which were artificially induced in embryos from both genotypes by means of fluridone application immediately after anthesis, to reduce ABA content, and embryo incubation in the presence of ABA. A defect in ABA signalling should be seen as a level of Rab17 expression that is independent of endogenous ABA content. For testing the second possibility at two stages of development, embryos from both lines were isolated and incubated in water for different periods. ABA concentrations in embryos and the incubation media were quantified through radioimmunoassay. In contrast to our findings for the resistant IS 9530 line, Rab17 expression did not respond to changes in ABA levels in sensitive Redland B2 embryos. The ABA degradation/conjugation rates in embryos and incubation media did not show clear differences between sorghum lines for any of the developmental stages analysed. These results suggest that a disruption in the ABA signal transduction pathway in Redland B2 underlies the low ABA sensitivity shown by embryos from this line.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carrari, F., Pérez-Flores, L., Lijavetzky, D., Enciso, S., Sánchez, R., Benech-Arnold, R. and Iusem, N. (2001) Cloning and expression of a sorghum gene with homology to maize vp1. Its potential involvement in pre-harvest sprouting resistance. Plant Molecular Biology 45, 631640.CrossRefGoogle ScholarPubMed
Carrari, F., Benech-Arnold, R., Osuna-Fernández, R., Hopp, E., Sánchez, R., Iusem, N. and Lijavetzky, D. (2003) Genetic mapping of the Sorghum bicolor vp1 gene and its relationship with preharvest sprouting resistance. Genome 46, 253258.CrossRefGoogle ScholarPubMed
Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14, S15S45.CrossRefGoogle ScholarPubMed
Fong, F., Smith, J.D. and Koehler, D.E. (1983) Early events in maize seed development. 1-methyl-3-phenyl-5-(3-[trifluoromethyl]phenyl)-4-(1h)-pyridinone induction of vivipary. Plant Physiology 73, 899901.CrossRefGoogle Scholar
Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F. and Goodman, H.M. (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4, 12511261.Google ScholarPubMed
Gubler, F., Millar, A.A. and Jacobsen, J.V. (2005) Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology 8, 183187.CrossRefGoogle ScholarPubMed
Karssen, C.M., Brinkhorst-Van der Swan, D.L.C., Breekland, A.E. and Koornneef, M. (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157, 158165.CrossRefGoogle ScholarPubMed
Krochko, J.E., Abrams, G.D., Loewen, M.K., Abrams, S.R. and Cutler, A.J. (1998) (+)-Abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiology 118, 849860.CrossRefGoogle ScholarPubMed
Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y. and Nambara, E. (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO Journal 23, 16471656.CrossRefGoogle Scholar
McKibbin, R.S., Wilkinson, M.D., Bailey, P.C., Flintham, J.E., Andrew, L.M., Lazzeri, P.A., Gale, M.D., Lenton, J.R. and Holdsworth, M.J. (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proceedings of the National Academy of Sciences, USA 15, 1020310208.CrossRefGoogle Scholar
Quarrie, S.A., Whitford, P.N., Appleford, N.E.J., Wang, T.L., Cook, S.K., Henson, I.E. and Loveys, B.R. (1988) A monoclonal antibody to (S)-abscisic acid: its characterization and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupine leaves. Planta 173, 330339.CrossRefGoogle Scholar
Razem, F.A., El-Kereamy, A., Abrams, S.R. and Hill, R.D. (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439, 290294.CrossRefGoogle ScholarPubMed
Riera, M., Figueras, M., Lopez, C., Goday, A. and Pages, M. (2004) Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein RAB17 from maize. Proceedings of the National Academy of Sciences, USA 101, 98799884.CrossRefGoogle ScholarPubMed
Robichaud, C.S., Wong, J. and Sussex, I.M. (1980) Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Developmental Genetics 1, 325330.CrossRefGoogle Scholar
Sambrook, J. and Russell, D.W. (2001) Molecular cloning: A laboratory manual (3rd edition). Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press.Google Scholar
Shen, Y.Y., Wang, X.F., Wu, F.Q., Du, S.Y., Cao, Z., Shang, Y., Wang, X.L., Peng, C.C., Yu, X.C., Zhu, S.Y., Fan, R.C., Xu, Y.H. and Zhang, D.P. (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823826.CrossRefGoogle ScholarPubMed
Steinbach, H.S., Benech-Arnold, R.L., Kristof, G., Sánchez, R.A. and Marcucci Poltri, S. (1995) Physiological basis of pre-harvest sprouting resistance in Sorghum bicolor (L.) Moench. ABA levels and sensitivity in developing embryos of sprouting resistant and susceptible varieties. Journal of Experimental Botany 46, 701709.CrossRefGoogle Scholar
Steinbach, H.S., Benech-Arnold, R.L. and Sánchez, R.A. (1997) Hormonal regulation of dormancy in developing Sorghum seeds. Plant Physiology 113, 149154.CrossRefGoogle ScholarPubMed
Trewavas, A. (2000) Signal perception and transduction. pp. 930986in Buchanan, B.B.; Gruissem, W.; Jones, R.L. (Eds) Biochemistry and molecular biology of plants. Rockville, Maryland, American Society of Plant Physiologists.Google Scholar
Visser, K., Vissers, A.P.A., Cagirgan, M.I., Kijne, J.W. and Wang, M. (1996) Rapid germination of a barley mutant is correlated with a rapid turnover of abscisic acid outside the embryo. Plant Physiology 111, 11271133.CrossRefGoogle ScholarPubMed
Xu, N., Coulter, K.M. and Bewley, J.D. (1990) Abscisic acid and osmoticum prevent germination of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins. Planta 182, 382390.CrossRefGoogle ScholarPubMed