Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-08T09:22:22.710Z Has data issue: false hasContentIssue false

Experimental Accuracy, Operationalism, and Limits of Knowledge – 1925 to 1935

Published online by Cambridge University Press:  26 September 2008

Mara Beller
Affiliation:
Program in History and Philosophy of ScienceThe Hebrew University of Jerusalem

Abstract

This paper analyzes the complex and many-layered interrelation between the realization of the inevitable limits of precision in the experimental domain, the emerging quantum theory, and empirically oriented philosophy in the years 1925–1935. In contrast to the usual historical presentation of Heisenberg's uncertainty principle as a purely theoretical achievement, this work discloses the experimental roots of Heisenberg's contribution. In addition, this paper argues that the positivistic philosophy of elimination of unobservables was not used as a guiding principle in the emergence of the new quantum theory, but rather mostly as a post facto justification. The case of P. W. Bridgman, analyzed in this paper, demonstrates how inconclusive operationalistic arguments are, when used as a possible heuristic aid for future discoveries. A large part of this paper is devoted to the evolution of Bridgman's views, and his skeptical reassessment of operationalism and of the very notion of scientific truth.

Type
Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beller, M., 1983 “Matrix Mechanics before Schrödinger,” Isis 74: 469–91.CrossRefGoogle Scholar
Beller, M., 1985. “;Pascual Jordan's Influence on the Discovery of Heisenberg's Indeterminacy Principle”, Archive for History of Exact Sciences 33 (4): 337–49.CrossRefGoogle Scholar
Beller, M., forthcoming. “Epistemological Opportunism and the Rise of Quantum Mechanics,” in the Boston Studies in the History and Philosophy of Science Dordrecht: Reidel.Google Scholar
Born, M. [1928–1929] 1956 “On the Meaning of Physical Theories,” Nachrichten der Gesellschaft der Wissenschaften zu Göttingen Reprinted in Physics in My Generation Oxford: Clarendon Press.Google Scholar
Born, M. and Jordan, P., 1925Über die Quantenmechanik,” Zeitschrift für Physik 34 (1925): 858CrossRefGoogle Scholar
Bridgman, W. P., 1927 The Logic of Modern Physics London: Macmillari.Google Scholar
Bridgman, W. P., 1930Permanent Elements in the Flux of Present-Day Physics,” Science 71: 21.CrossRefGoogle ScholarPubMed
Bridgman, W. P., 1932Statistical Mechanics and the Second Law of Thermodynamics,” Bull. Amer. Math. Soc., 4, 1932.Google Scholar
Bridgman, W. P., 1933The Nature and Limitations of Cosmical Inquiries,” Scientific Monthly 37Google Scholar
Bridgman, W. P., 1936 The Nature of Physical Theory Princeton: Princeton University Press.Google Scholar
Darwin, C. G., 1927Collision Problem in Wave Mechanics,” Proceedings of Royal Society A, 124: 391.Google Scholar
Heisenberg, W., 1927Über den anschaulichen Inhalt der Quantentheoretischen Kinematik und Mechanik,” Zeitschrift für Physik 43: 179–98CrossRefGoogle Scholar
Hendry, J. 1984 The Creation of Quantum Mechanics and the Bohr-Pauli Dialogue. Dordrecht: Reidel.CrossRefGoogle Scholar
Ising, Y. 1926A Natural Limit for the Sensibility of Galvanometers,” Philosophical Magazine [6] 51: 827–35Google Scholar
Jammer, M. 1966 The Conceptual Development of Quantum Mechanics New York: McGraw HillGoogle Scholar
Jordan, P. 1927Philosophical Foundation of Quantum Theory,” Nature 199: 566–69. Originally published in German “Kausalität und Statistik in der modernen Physik, ” Naturwissenschaften 15: 105–10CrossRefGoogle Scholar
Kennard, E. H. 1928Note on Heisenberg's Indetermination Principle,” Physical Review 31: 345.CrossRefGoogle Scholar
Moll, W. G. M. and Burger, H. C. 1925The Thermo-Relay,” and “The Sensitivity of a Galvanometer and its Amplification,” Philosophical Magazine [6] 2 (Sept. 1925): 624–31.Google Scholar
Schrödinger, E., 1932 Über Indeterminismus in der Physik Leipzig Cited in von Laue 1932.Google Scholar
Schrödinger, E., 1934Über die Unanwendbarkeit der Geometrie im Kleinen,” Naturwissenschaften 31: 518–20.CrossRefGoogle Scholar
Small, H. 1981 Physics Citation Index 1920–1929 Philadelphia: ISI.Google Scholar
Smoluchowsky, M. R. 1912Experimentall nachweisbare, der üblichen Ther-modynamik widersprechende Molecularphänomene,” Physikalische Zeitschrift 13: 1069–80. Cited by Ising (1926).Google Scholar
von Laue, M., 1932Zu den Erörterungen über Kausalität,” Naturwissenschaften 51: 915–16.CrossRefGoogle Scholar
von Laue, M., “Über Heisenbergs Ungenauigkeitsbeziehungen und ihre erkenntnistheoretische Bedeutung,” Naturwissenschaften 26: 439–41.Google Scholar
von Mises, R. [1928] 1957 Probability, Statistics and Truth London: Allen, G. and Unwin, New York: Macmillan.Google Scholar
Zernike, F. 1926Die natürliche Beobachtungsgrenze der Stromstärke,” Zeitschrift für Physik 40: 628–36.CrossRefGoogle Scholar