Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-05T01:09:17.015Z Has data issue: false hasContentIssue false

A hybrid cable-driven parallel robot as a solution to the limited rotational workspace issue

Published online by Cambridge University Press:  05 July 2022

Ferdaws Ennaiem*
Affiliation:
Department of GMSC, Prime Institute, CNRS - University of Poitiers - ENSMA - UPR 3346, France Mechanical Laboratory of Sousse, National Engineering School of Sousse, University of Sousse, Tunisia
Abdelbadia Chaker
Affiliation:
Mechanical Laboratory of Sousse, National Engineering School of Sousse, University of Sousse, Tunisia
Juan Sandoval
Affiliation:
Department of GMSC, Prime Institute, CNRS - University of Poitiers - ENSMA - UPR 3346, France
Abdelfattah Mlika
Affiliation:
Mechanical Laboratory of Sousse, National Engineering School of Sousse, University of Sousse, Tunisia
Lotfi Romdhane
Affiliation:
Mechanical Laboratory of Sousse, National Engineering School of Sousse, University of Sousse, Tunisia College of Engineering, American University of Sharjah, PO Box 26666 Sharjah, United Arab Emirates
Sami Bennour
Affiliation:
Mechanical Laboratory of Sousse, National Engineering School of Sousse, University of Sousse, Tunisia
Said Zeghloul
Affiliation:
Department of GMSC, Prime Institute, CNRS - University of Poitiers - ENSMA - UPR 3346, France
Med Amine Laribi
Affiliation:
Department of GMSC, Prime Institute, CNRS - University of Poitiers - ENSMA - UPR 3346, France
*
*Corresponding author. E-mail: ferdaws.ennaiem@univ-poitiers.fr

Abstract

Cable-driven parallel robots (CDPRs) are still gaining attention thanks to their interesting characteristics compared to serial or classic parallel manipulators. However, the limited range of rotation of their end-effectors reduces their application fields to predominantly translational movements. In this context, the issue of extending the rotational workspace of a CDPR while maintaining a compact robot structure is addressed in this paper. This work is motivated by the need to find the optimal CDPR for upper limb rehabilitation allowing to assist the patient’s hand along a set of prescribed tasks. Firstly, a reconfigurable robot, where the motors’ locations are movable, is proposed in order to help reaching all the prescribed poses. Although this solution presents promising results compared to classical CDPRs, it involves a sizable robot structure inadequate to rehabilitation application. To improve the obtained solution, another approach is proposed, based on combining the large translational workspace of CDPRs and the large rotational workspace of serial manipulators. The optimal structure of a hybrid robot will be considered for the prototype design.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babaiasl, M., Mahdioun, S. H., Jaryani, P. and Yazdani, M., “A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke,” Disabil. Rehabil. Assist. Technol 11, 263280 (2016).Google ScholarPubMed
Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A. and Leonhardt, S., “A survey on robotic devices for upper limb rehabilitation,” J. Neuroeng. Rehabil. 11(1), 129 (2014).CrossRefGoogle ScholarPubMed
Guiet, J. L. L. and Claire, G. L., “Pendant Combien de Temps Doit-on Pratiquer LA rééducation Du Membre supérieur Chez l’hémiplégique?,” In: Annales de réadaptation et de médecine Physique. vol. 41 (Elsevier Masson, 1998) pp. 107113.Google Scholar
Gassert, R. and Dietz, V., “Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective,” JNER 15(1), 115 (2018).CrossRefGoogle ScholarPubMed
Oña, E. D., La Cuerda, R. C.-D., Sánchez-Herrera, P., Balaguer, C. and Jardón, A., “A review of robotics in neurorehabilitation: towards an automated process for upper limb,” J. Healthc. Eng. 2018, 119 (2018).CrossRefGoogle ScholarPubMed
Qassim, H. M. and Hasan, W. Z. W., “A review on upper limb rehabilitation robots,” Appl. Sci. 10(19), 6976 (2020).CrossRefGoogle Scholar
Xiong, H. and Diao, X., “A review of cable-driven rehabilitation devices,” Disab. Rehab. Assis. Technol. 15(8), 885897 (2020).CrossRefGoogle ScholarPubMed
Carbone, G., Gherman, B., Ulinici, I., Vaida, C. and Pisla, D., “Design Issues for an Inherently Safe Robotic Rehabilitation Device,” In: International Conference on Robotics in Alpe-Adria Danube Region Springer, Cham, 2020) pp. 1025-1032.CrossRefGoogle Scholar
Tang, X., “An overview of the development for cable-driven parallel manipulator,” Adv. Mech. Eng. 6(2), 823028 (2014).CrossRefGoogle Scholar
Deng, Y., Bai, L., Long, Z., Guan, J., Chen, X., Hou, J. and Duan, W., “Research on Cable-Driven Robots,” In: Proc. Int. Conf. Adv. Cont., Autom. Artif. Intell . (2018) pp. 4147.Google Scholar
Qian, S., Zi, B., Shang, W. W. and Xu, Q. S., “A review on cable-driven parallel robots,” Chin. J. Mech. Eng 31(1), 111 (2018).CrossRefGoogle Scholar
Andreas, P., Hendrik, M., Werner, K. and et al., “Cable-Driven Parallel Robots for Industrial Applications: The IPAnema System Family,” In: IEEE ISR 2013 (IEEE, 2013) pp. 16.Google Scholar
Laura, M. C., Rauter, G., Wyss, D., von Zitzewitz, J. and Riener, R., “Synthesis and Control of an Assistive Robotic Tennis Trainer,” In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (IEEE, 2012) pp. 355360.Google Scholar
Georg, R., Joachim, V. Z., D., W. and Alexander, etal, “A Tendon-Based Parallel Robot Applied to Motor Learning in Sports,” In: 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (IEEE, 2010) pp. 8287.Google Scholar
Blanchet, L. and Merlet, J. P., “Interference Detection for Cable-Driven Parallel Robots (CDPRs),” In: ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014) pp. 14131418.CrossRefGoogle Scholar
Reichenbach, T., Tempel, P., Verl, A. and Pott, A., “Static Analysis of A Two-Platform Planar Cable-Driven Parallel Robot with Unlimited Rotation,” In: International Conference on Cable-Driven Parallel Robots (Springer, Cham, 2019) pp. 121133.CrossRefGoogle Scholar
Gagliardini, L., Gouttefarde, M. and Caro, S., “Design of Reconfigurable Cable-Driven Parallel Robots,” In: Mechatronics for Cultural Heritage and Civil Engineering (Springer, Cham, 2018) pp. 85113.CrossRefGoogle Scholar
Zhao, Q. and Gao, F., “Design and Analysis of A New Cable-Driven Hyper Redundant Manipulator,” In: 2010 International Conference on Intelligent Computation Technology and Automation (IEEE, 2010) pp. 11111114.Google Scholar
Faschinger, F., von Zitzewitz, J. and Pernkopf, F., “Ein Paralleler, 8-achsiger Seilroboter Mit Grossem Arbeitsraum Als Handlingapplikation,” In: Proceedings of Internationales Forum Mechatronik , Linz, Austria (2006) pp. 218228.Google Scholar
Joachim, V. Z., Lisa, F., Tobias, B. and et al., “Use of Passively Guided Deflection Units and Energy-Storing Elements to Increase the Application Range of Wire Robots,” In: First International Conference on Cable-driven Parallel Robots (CableCon 2012) (2013) pp. 167184.Google Scholar
Hanafie, J., Nurahmi, L., Caro, S. and Pramujati, B., “Design Optimization of Spatial Four Cables Suspended Cable Driven Parallel Robot for Rapid Life-Scan,” In: AIP Conference Proceedings. vol. 1983 (AIP Publishing LLC, 2018) pp. 060007.Google Scholar
Abdolshah, S., Zanotto, D., Rosati, G. and Agrawal, S. K., “Optimizing stiffness and dexterity of planar adaptive cable-driven parallel robots,” J. Mech. Robot. 9(3), 031004 (2017).CrossRefGoogle Scholar
Fattah, A., Agrawal, S. K. and S., K., “On the design of cable-suspended planar parallel robots,” J. Mech. Des. 127(5), 10211028 (2005).CrossRefGoogle Scholar
Hamida, I. B., Laribi, M. A., Mlika, A., Romdhane, L., Zeghloul, S. and Carbone, G., “Multi-objective optimal design of a cable driven parallel robot for rehabilitation tasks,” Mech. Mach. Theory 156(3), 104141 (2021).CrossRefGoogle Scholar
Zitzewitz, J. V., Rauter, G., Steiner, R., Brunschweiler, A. and Riener, R., “A Versatile Wire Robot Concept as A Haptic Interface for Sport Simulation,” In: 2009 IEEE International Conference on Robotics and Automation (IEEE, 2009) pp. 313318.CrossRefGoogle Scholar
Laribi, M. A. and Zeghloul.", S., “Human Lower Limb Operation Tracking Via Motion Capture Systems,” In: Design and Operation of Human Locomotion Systems (Academic Press, 2020) pp. 83107.CrossRefGoogle Scholar
Ennaiem, F., Chaker, A., Arévalo, J. S. S., Laribi, M. A., Bennour, S., Mlika, A., Romdhane, L. and Zeghloul, S., “Sensitivity based selection of an optimal cable-driven parallel robot design for rehabilitation purposes,” Robotics 10(1), 7 (2021).10.3390/robotics10010007CrossRefGoogle Scholar
Ennaiem, F., Chaker, A., Arévalo, J. S. S., Laribi, M. A., Bennour, S., Mlika, A., Romdhane, L. and Zeghloul, S., “Cable-Driven parallel robot workspace identification and optimal design based on the upper limb functional rehabilitation,” J. Bionic Eng. 1-13(2), 390402 (2022).CrossRefGoogle Scholar
Gagliardini, L., Caro, S., Gouttefarde, M., Wenger, P. and Girin, A., “Optimal Design of Cable-Driven Parallel Robots for Large Industrial Structures,” In: IEEE International Conference on Robotics and Automation (ICRA) (2014) pp. 57445749.Google Scholar
Abdolshah, S., Zanotto, D., Rosati, G. and Agrawal, S. K., “Optimizing stiffness and dexterity of planar adaptive cable-driven parallel robots,” J. Mech. Robot. 9(3), 031004 (2017).CrossRefGoogle Scholar
Williams, R. L., Gallina, P. and Vadia, J., “Planar translational cable-direct-driven robots,” J. Robot. Syst. 20(3), 107120 (2003).CrossRefGoogle Scholar
J. NASA, Anthropometry and biomechanics,” Man-Syst. Integr. Stand. 1 (2000).Google Scholar
Eberhart, R. and James, K., “A New Optimizer Using Particle Swarm Theory,” In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science (IEEE, 1995).Google Scholar