Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T16:31:25.290Z Has data issue: false hasContentIssue false

Group work of distributed microactuators

Published online by Cambridge University Press:  09 March 2009

Hiroyuki Fujita
Affiliation:
Institute of Industrial Science, The University of Tokyo, 7–22–1 Roppongi, Minato–ku, Tokyo 106 (Japan) fujita 88s. u–tokyo. ac.jp
Manabu Ataka
Affiliation:
Institute of Industrial Science, The University of Tokyo, 7–22–1 Roppongi, Minato–ku, Tokyo 106 (Japan) fujita 88s. u–tokyo. ac.jp
Satoshi Konishi
Affiliation:
Institute of Industrial Science, The University of Tokyo, 7–22–1 Roppongi, Minato–ku, Tokyo 106 (Japan) fujita 88s. u–tokyo. ac.jp

Summary

This paper proposes and demonstrates a method toobtain macroscopic work out of distributed microactuatorsfabricated by IC-compatible micromachiningprocesses. We have coordinated the simple and smallmotion of microactuators in order to perform a task. Theconcept and a control scheme are discussed first. In orderto show the feasibility, the fabrication and operation ofarrayed microactuators for conveyors are described. One uses thermally driven cantilevers and the other uses controlled air flow from micronozzles to carry flat objects.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Howe, R.T., Muller, R.S., Gabriel, K.J. and Trimmer, W.S.N., “Silicon Micromechanics: Sensors and Actuators on a ChipIEEE Spectrum, 2935 (06, 1991).Google Scholar
2. Gabriel, K.J., “MEMS. Research Projects in U.S.A”. J. of JSME 97, No. 905, 272275 (1994) (translated into Japanese).Google Scholar
3. Fan, L.-S., Tai, Y.-C. and Muller, R.S., “Integrated Movable Micromechanical Structures for Sensors and ActuatorsIEEE Trans. on Electron Devices, ED-35, 724730 (1988).CrossRefGoogle Scholar
4. Meheregany, M., Gabriel, K. J. and Trimmer, W.S., “Integrated Fabrication of Polysilicon Micro-mechanismsIEEE Trans. on Electron Devices, ED-35, 719723 (1988).CrossRefGoogle Scholar
5. Fan, L.S., Tai, Y.C. and Muller, R.S., “IC-processed electrostatic micromotorsSensors & Actuators, 20, 4148 (1989).Google Scholar
6. Menz, W., Bacher, W., Hermening, M., and Michel, A., “The LIGA Technique - a Novel Concept for Microstructures and the Combination with Si-Technologies by Injection MoldingProc. 4th IEEE Workshop on Micro Electro Mechanical Systems, Nara, Japan (01 30–February 2, 1991) pp. 6973.Google Scholar
7. Guckel, H., Skrobis, K.J., Christenson, T.R., Klein, J., Han, S., Choi, B. and E.Lovell, G., “Fabrications of Assembled Micromechanical Components via Deep-X-ray Lithography” Proc. 4th IEEE Workshop on Micro Electro Mechanical Systems, Nara, Japan (01 30–02 2, 1991) pp. 7479.Google Scholar
8. Fujita, H. and Gabriel, K.J., “New Opportunities for Microactuators” Proc. of 6th International Conference on Solid-state Sensors and Actuators, San Francisco (06 23–27, 1991) pp. 1420.Google Scholar
9. Bobbio, S.M., Kellam, M.D., Dudley, B.W., GoodwinJohnasson, S., Jones, S.K., Jacobson, J.D., Tranjan, F.M. and DuBois, T.D., “Integrated Force Arrays” Proc. 6th IEEE Workshop on Micro Electro Mechanical Systems, Fort Lauderdale, FL (02 7–10, 1993) pp. 149154.Google Scholar
10. Chen, L.Y., Santos, E.J.P. and MacDonald, N.C., “An Isolativa Technology for. Joined Tungsten MEMS“ Proc. 6th IEEE Workshop on Micro Electro Mechanical Systems, Fort Lauderdale, FL (02 7–10, 1993) pp. 189194.Google Scholar
11. Minami, M., Kawamura, S. and Esashi, M., “Distributed Electrostatic Micro Actuator (DEMA)“ Abstract of Late News Papers, 7th Interntl Conf on Solid-State Sensors & Actuators, Yokohama, Japan (06 7–10, 1993) pp. 23.Google Scholar
12. Ataka, M., Omodaka, A., Takeshima, N. and Fujita, H., “Polyimide Bimorph Actuators for a Ciliary Motion SystemIEEE/ASME J. of Microelectromechanical Syst. 2, No. 4, 146150 (1993).CrossRefGoogle Scholar
13. Konishi, S. and Fujita, H., “A Conveyance System Using Air Flow Based on the Concept of Distributed Micro Motion SystemsIEEE/ASME J. of Microelectromechanical Syst. 3, 5458 (1994).Google Scholar
14. Takeshima, N. and Fujita, H., “Design and Control of Systems with Microactuator Array”, Proc. IEEE Workshop in Advanced Motion Control, Yokohama, Japan (03 1990) pp. 219232.Google Scholar
15. Riethmtiller, W. and Benecke, W., “Thermally Excited Silicon Microactuators”, IEEE Trans on Electron Devices, ED-35, 758763 (1988).CrossRefGoogle Scholar
16. Schmidt, M., Howe, R.T., Senturia, S. and Haritonidis, J., “Design and Calibration of a Microfabricated Floating Element Shear-Stress SensorIEEE Trans on Electron Devices ED-35, 750757 (1988).CrossRefGoogle Scholar
17. Pister, K., Fearing, R. and Howe, R.T., “A Planar Air Levitated Electrostatic Actuator System” Proc. 3rd IEEE Workshop on Micro Electro Mechanical Systems, Napa Valley, CA (02, 1990) pp. 6771.Google Scholar