Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-22T15:09:12.278Z Has data issue: false hasContentIssue false

Energy-efficient limit cycle walking in disturbance based on nonlinear model predictive control

Published online by Cambridge University Press:  15 November 2023

Yuta Hanazawa*
Affiliation:
Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
Haruka Nishinami
Affiliation:
Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
Shinichi Sagara
Affiliation:
Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
*
Corresponding author: Yuta Hanazawa; Email: hanazawa@cntl.kyutech.ac.jp

Abstract

In this study, we present a novel approach to generate limit cycle walking using nonlinear model predictive control (NMPC). Output-zeroing control is now widely used as a control method to limit cycle walking. This control offers strong feedback to the desired trajectory and the generation of energy-efficient and robust limit cycle walking. However, we observed that this method disables the natural dynamics of the robot, leading to problems regarding energy efficiency during walking. This study demonstrates that the energy consumption of walking using the output-zeroing control increases significantly in a disturbed environment. To overcome this limitation, the proposed approach leverages the robot’s dynamics using NMPC to achieve energy-efficient walking even in a disturbed environment. We demonstrate the practicality of the proposed method using two different simulation environments.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K. and Hirukawa, H., “Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point,” In: Proc. of IEEE International Conference on Robotics and Automation (ICRA) (2003) pp. 16201626.Google Scholar
Tajima, R., Honda, D. and Suga, K., “Fast Running Experiments Involving a Humanoid Robot,” In: Proc. of IEEE International Conference on Robotics and Automation (ICRA) (2009) pp. 15711576.Google Scholar
Nishiwaki, K. and Kagami, S., “Strategies for Adjusting the ZMP Reference Trajectory for Maintaining Balance in Humanoid Walking,” In: Proc. of IEEE International Conference on Robotics and Automation (ICRA) (2010) pp. 42304236.Google Scholar
Satoshi, S., Goswami, A. and Vadakkepat, P., “ASIMO and Humanoid Robot Research at Honda,” In: Humanoid Robotics: A Reference (2018) pp. 5590.Google Scholar
McGeer, T., “Passive dynamic walking,” Int. J. Robot. Res. 9(2), 6282 (1990).CrossRefGoogle Scholar
Collins, S. H., Ruina, A., Tedrake, R. and Wisse, M., “Efficient bipedal robots based on passive-dynamic walkers,” Science 307(5712), 10821085 (2005).CrossRefGoogle ScholarPubMed
Hobbelen, D. G. E. and Wisse, M., “Limit Cycle Walking,” In: Humanoid Robots, Human-Like Machines, chapter 14 (Itech, Vienna, 2007).Google Scholar
Grizzle, J. W., Abba, G. and Plestan, F., “Asymptotically stable walking for biped robots: Analysis via systems with impulse effects,” IEEE Trans. Autom. Control 46(1), 5164 (2001).CrossRefGoogle Scholar
Shimizu, T., Nakaura, S. and Sampei, M., “The Control of a Bipedal Running Robot Based on Output Zeroing Considered Rotation of the Ankle Joint,” In: Proc. of the 45th IEEE Conference on Decision and Control (2006) pp. 64566461.CrossRefGoogle Scholar
Westervelt, E. R., Grizzle, J. W., Chevallereau, C., Choi, J. H. and Morris, B., Feedback Control of Dynamic Bipedal Robot Locomotion (CRC press, Boca Raton, FL, 2018).CrossRefGoogle Scholar
Gong, Y., Hartley, R., Da, X., Hereid, A., Harib, O., Huang, J. K. and Grizzle, J. W., “Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway,” In: Proc. of American Control Conference (ACC) (2019) pp. 45594566.Google Scholar
Ohtsuka, T., “A continuation/GMRES method for fast computation of nonlinear receding horizon control,” Automatica 40(4), 563574 (2004).CrossRefGoogle Scholar
Onodera, Y. and Yamakita, M., “An Extension of Nonlinear Receding Horizon Control for Switched System with State Jump,” In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2005) pp. 984989.Google Scholar
Murayama, A. and Yamakita, M., “Speed Control of Vehicles with Variable Valve Lift Engine by Nonlinear MPC,” In: Proc. SICE Annal Conference (2009) pp. 41284133.Google Scholar
Odachi, K., Oyama, H. and Yamakita, M., “Nonlinear Model Predictive Control of SI Engine Using Discrete Time Identification Model,” In: Proc. SICE Annal Conference (2015) pp. 13051310.Google Scholar
Deng, H. and Ohtsuka, T., “A parallel Newton-type method for nonlinear model predictive control,” Automatica 109, 108560 (2019). https://www.sciencedirect.com/science/article/pii/S0005109819304212 CrossRefGoogle Scholar
Katayama, S., Doi, M. and Ohtsuka, T., “A moving switching sequence approach for nonlinear model predictive control of switched systems with state-dependent switches and state jumps,” Int. J. Robust Nonlinear Control 30(2), 719740 (2020).CrossRefGoogle Scholar
Asano, F. and Kawamoto, J., “Passive Dynamic Walking of Viscoelastic-Legged Rimless Wheel,” In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012) pp. 157162.Google Scholar
Hanazawa, Y., “Development of Rimless Wheel with Controlled Wobbling Mass,” In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018) pp. 43334339.Google Scholar
Sanchez, S. and Bhounsule, P. A., “Design, modeling, and control of a differential drive rimless wheel that can move straight and turn,” Automation 2(3), 98115 (2021).CrossRefGoogle Scholar
Hanazawa, Y., Nishinami, H. and Sagara, S., “Walking experiments of small and lightweight rimless wheel robot,” Artif. Life Robot. 27(4), 706713 (2022).CrossRefGoogle Scholar
Asano, F. and Luo, Z. W., “Asymptotically stable biped gait generation based on stability principle of rimless wheel,” Robotica 27(6), 949958 (2009).CrossRefGoogle Scholar
Asano, F. and Suguro, M., “Limit cycle walking, running, and skipping of telescopic-legged rimless wheel,” Robotica 30(6), 9891003 (2012).CrossRefGoogle Scholar

Hanazawa et al. supplementary material

Hanazawa et al. supplementary material

Download Hanazawa et al. supplementary material(Video)
Video 17 MB