Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T00:03:22.790Z Has data issue: false hasContentIssue false

Design and stability analysis of semi-implicit cascaded proportional-derivative controller for underactuated cart-pole inverted pendulum system

Published online by Cambridge University Press:  16 October 2023

Changyi Lei
Affiliation:
Department of Informatics, King’s College London, London, UK
Ruobing Li
Affiliation:
Department of Engineering, Design and Mathematics, University of the West of England, Bristol, UK
Quanmin Zhu*
Affiliation:
Department of Engineering, Design and Mathematics, University of the West of England, Bristol, UK
*
Corresponding author: Quanmin Zhu; Email: quan.zhu@uwe.ac.uk

Abstract

This article proposes a control method for underactuated cartpole systems using semi-implicit cascaded proportional-derivative (PD) controller. The proposed controller is composed of two conventional PD controllers, which stabilizes the pole and the cart second-order dynamics respectively. The first PD controller is realized by transforming the pole dynamics into a virtual PD controller, with the coupling term exploited as the internal tracking target for the cart dynamics. Then, the second PD controller manipulates the cart dynamics to track that internal target. The solution to the internal tracking target relies on an equation set and features a semi-implicit process, which exploits the internal dynamics of the system. Besides, the design of second PD controller relies on the parameters of the first PD controller in a cascaded manner. A stability analysis approach based on Jacobian matrix is proposed and implemented for this fourth-order system. The proposed method is simple in design and intuitive to comprehend. The simulation results illustrate the superiority of proposed method compared with conventional double-loop PD controller in terms of convergence, with the theoretical conclusion of at least locally asymptotic stability.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, Z., Liu, Y., He, W., Qiao, H.-Y. and Ji, H., “Adaptive-neural-network-based trajectory tracking control for a nonholonomic wheeled mobile robot with velocity constraints,” IEEE Trans. Ind. Electron. 68(10), 50575067 (2021).CrossRefGoogle Scholar
Heshmati-alamdari, S., Nikou, A. and Dimarogonas, D. V., “Robust trajectory tracking control for underactuated autonomous underwater vehicles in uncertain environments,” IEEE Trans. Autom. Sci. Eng. 18(3), 12881301 (2021).CrossRefGoogle Scholar
Liu, Y., Zhan, W., Xing, M., Wu, Y., Xu, R. and Wu, X., “Boundary control of a rotating and length-varying flexible robotic manipulator system,” IEEE Trans. Syst. Man Cybern. Syst. 52(1), 377386 (2022).CrossRefGoogle Scholar
Messikh, L., Guechi, E.-H. and Blai, S., “Stabilization of the cart-inverted-pendulum system using state-feedback pole-independent MPC controllers,” Sensors (Basel, Switzerland) 22(1), 243 (2021).CrossRefGoogle ScholarPubMed
Banerjee, R. and Pal, A., “Stabilization of Inverted Pendulum on Cart Based on Pole Placement and LQR,” In: 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET) (2018) pp. 15.Google Scholar
Balaga, H. and Deepthi, M., “Stabilization of Cart Inverted Pendulum System Using LQR, Two-Loop Pid, and Regional Pole Placement Techniques,” In: 2021 Asian Conference on Innovation in Technology (ASIANCON) (2021) pp. 16.Google Scholar
Eizadiyan, M. A. and Naseriyan, M., “Control of inverted pendulum cart system by use of PID controller,” Sci. Int. 27(2), 10631068 (2015).Google Scholar
Slotine, J.-J. E. and Li, W., Applied nonlinear control (Prentice Hall, Englewood Cliffs, NJ, 1991).Google Scholar
Shao, Y. and Li, J., “Modeling and switching tracking control for a class of cart-pendulum systems driven by DC motor,” IEEE Access 8, 4485844866 (2020).CrossRefGoogle Scholar
Jiangand, J. and Astolfi, A., “Stabilization of a class of underactuated nonlinear systems via underactuated back-stepping,” IEEE Trans. Autom. Control 66(11), 54295435 (2020).CrossRefGoogle Scholar
Lakmesari, S. H., Mahmoodabadi, M. J. and Ibrahim, M. Y., “Fuzzy logic and gradient descent-based optimal adaptive robust controller with inverted pendulum verification,” Chaos Solitons Fractals 151, 111257 (2021).CrossRefGoogle Scholar
Dao, P. N. and Liu, Y.-C., “Adaptive reinforcement learning strategy with sliding mode control for unknown and disturbed wheeled inverted pendulum,” Int. J. Control Autom. Syst. 19(2), 11391150 (2020).CrossRefGoogle Scholar
Ordaz, P. and Poznyak, A., “‘KL’-gain adaptation for attractive ellipsoid method,” IMA J. Math. Control Inf. 32(3), 447469 (2015).CrossRefGoogle Scholar
Kennedy, E. A., King, E. and Tran, H., “Real-time implementation and analysis of a modified energy based controller for the swing-up of an inverted pendulum on a cart,” Eur. J. Control 50, 176187 (2019).CrossRefGoogle Scholar
Ranasinghe, R., Manoharan, P., Pallegedara, A. and Kodithuwakku, D., “Develop a Cascaded Observer Based Controller to an Inverted Pendulum Platform for Experimental Research and Teaching,” In: 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET) (2022) pp. 215220.CrossRefGoogle Scholar
Ratolikar, M. D. and Kumar, R. P., “Neural Network Control of an Inverted Pendulum on a Two DOF Cart Moving in the Vertical Plane,” In: 2021 6th International Conference on Robotics and Automation Engineering (ICRAE) (2021) pp. 8488.CrossRefGoogle Scholar
Peng, Z., Jiang, Y. and Wang, J., “Event-triggered dynamic surface control of an underactuated autonomous surface vehicle for target enclosing,” IEEE Tran. Ind. Electron. 68(4), 34023412 (2021).CrossRefGoogle Scholar
Rojsiraphisal, T., Mobayen, S., Asad, J. H., Vu, M. T., Chang, A. and Puangmalai, J., Fast terminal sliding control of underactuated robotic systems based on disturbance observer with experimental validation,” Mathematics 9(16), 1935 (2021).CrossRefGoogle Scholar
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N. M. O., Erez, T., Tassa, Y., Silver, D. and Wierstra, D., “Continuous control with deep reinforcement learning,” CoRR, abs/1509.02971 (2015).Google Scholar
Shi, Q., Lam, H.-K., Xuan, C. and Chen, M., “Adaptive neuro-fuzzy PID controller based on twin delayed deep deterministic policy gradient algorithm,” Neurocomputing 402, 183194 (2020).CrossRefGoogle Scholar
Hiremath, S. A. and Bajçinca, N., “DNN Based Learning Algorithm for State Constrained Stochastic Control of a 2D Cartpole System,” In: 2022 European Control Conference (ECC) (2022) pp. 11321139.CrossRefGoogle Scholar
Lam, H. K. and Leung, F. H. F., “Fuzzy controller with stability and performance rules for nonlinear systems,” Fuzzy Set. Syst. 158(2), 147163 (2007).CrossRefGoogle Scholar
Chen, C. T., Linear System Theory and Design, The Oxford Series in Electrical and Computer Engineering (Oxford University Press, Oxford, 2014).Google Scholar
Tomei, P., “A simple PD controller for robots with elastic joints,” IEEE Trans. Autom. Control 36(10), 12081213 (1991).CrossRefGoogle Scholar
Higham, N. J., “Gaussian elimination,” Wiley Interdiscip. Rev. Comput. Stat. 3(3), 230238 (2011).CrossRefGoogle Scholar
Deng, C. and Liu, W., “Semi-implicit Euler-Maruyama method for non-linear time-changed stochastic differential equations,” BIT Numer. Math. 60, 11331151 (2019).CrossRefGoogle Scholar
Zhao, C. and Guo, L., “On the capability of PID control for nonlinear uncertain systems,” IFAC-PapersOnLine 50(1), 15211526 (2017).CrossRefGoogle Scholar
Andrade, F. A. A., Guedes, I. P., Carvalho, G. F., Zachi, A. R. L., Haddad, D. B., Almeida, L. F., de Melo, A. G. and Pinto, M. F., “Unmanned aerial vehicles motion control with fuzzy tuning of cascaded-PID gains,” Machines 10(1), 12 (2021).CrossRefGoogle Scholar
Meurer, A., Smith, C. P., Paprocki, M., Čertík, Ořej, Kirpichev, S. B., Rocklin, M., Kumar, A. M.iT., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, Štěpán, Saboo, A., Fernando, I., Kulal, S., Cimrman, R. and Scopatz, A., “Sympy: Symbolic computing in python,” PeerJ Comput. Sci. 3, e103 (2017).CrossRefGoogle Scholar
Khalil, H. K., Nonlinear Systems, 3rd edition (Prentice Hall, Upper Saddle River, NJ, 2008).Google Scholar
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J. and Zaremba, W., “Openai gym,” arXiv preprint, arXiv:1606.01540 (2016).Google Scholar
Neumann-Brosig, M., Marco, A., Schwarzmann, D. and Trimpe, S., “Data-efficient autotuning with bayesian optimization: An industrial control study,” IEEE Trans. Control Syst. Technol. 28(3), 730740 (2020).CrossRefGoogle Scholar
Solis, M. A. and Thomas, S. S., “Generalized state-feedback controller synthesis for underactuated systems through bayesian optimization,” ArXiv, abs/2103.17158 (2021).Google Scholar
Wang, X., Sun, Z. and Zai, S., “Application of Double-Loop PID Controller in the Inversed Pendulum Real-Time Control System,” In: Green Communications and Networks: Proceedings of the International Conference on Green Communications and Networks (GCN 2011) (Springer, Dordrecht, 2012) pp. 619626.CrossRefGoogle Scholar
Feßler, R., “A proof of the two-dimensional markus-yamabe stability conjecture and a generalization,” Ann. Pol. Math. 62(1), 4574 (1995).CrossRefGoogle Scholar
Kuznetsov, N. V., Kuznetsova, O. A., Koznov, D., Mokaev, R. N. and Andrievsky, B., “Counterexamples to the Kalman conjectures,” IFAC-PapersOnLine 51(33), 138143 (2018). 5th IFAC Conference on Analysis and Control of Chaotic Systems CHAOS 2018.CrossRefGoogle Scholar
Lötstedt, P., “Coulomb friction in two-dimensional rigid body systems,” ZAMM 61, 605615 (1981).CrossRefGoogle Scholar
Markus, L. and Yamabe, H., “Global stability criteria for differential systems,” Osaka Math. J. 12(2), 305317 (1960).Google Scholar