Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T08:52:58.662Z Has data issue: false hasContentIssue false

A contact parameter estimation method for multi-modal robot locomotion on deformable granular terrains

Published online by Cambridge University Press:  24 January 2024

Shipeng Lyu
Affiliation:
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
Wenyao Zhang
Affiliation:
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
Chen Yao
Affiliation:
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
Zhengtao Liu
Affiliation:
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
Yang Su
Affiliation:
Harbin of Institute of Technology (HIT), Harbin, 150090, China
Zheng Zhu
Affiliation:
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
Zhenzhong Jia*
Affiliation:
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
*
Corresponding author: Zhenzhong Jia; Email: jiazz@sustech.edu.cn

Abstract

In this paper, we consider the problem of contact parameters (slippage and sinkage) estimation for multi-modal robot locomotion on granular terrains. To describe the contact events in the same framework for robots operated at different modes (e.g., wheel, leg), we propose a unified description of contact parameters for multi-modal robots. We also provide a parameter estimation method for multi-modal robots based on CNN and DWT (discrete wavelet transformation) techniques and verify its effectiveness over different types of granular terrains. Besides motion modes, this paper also considers the influence of slope angles and the robot’s handing angles over contact parameters. Through comparison and analysis of the prediction results, our method can not only effectively predict the contact parameters of multi-modal robot locomotion on a granular medium (better than $96\%$ accuracy) but also achieves the same or better performance when compared to other (direct) contact measurement methods designed for individual motion modes, that is, single-modal robots such as quadruped robots and mars rovers. Our proposed unified contact parameter estimation method can be useful for studying the interaction mechanics between multi-modal robots and granular terrains as well as terrain classification tasks due to its superior sensitivity which is analyzed in the experiments.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reina, G., Ojeda, L., Milella, A. and Borenstein, J., “Wheel slippage and sinkage detection for planetary rovers,” IEEE/ASME Trans. Mechatron. 11(2), 185195 (2006).CrossRefGoogle Scholar
Li, R., Wu, B., Di, K., Angelova, A., Arvidson, R. E., Lee, I.-C., Maimone, M., Matthies, L. H., Richer, L., Robert, H. Michael, G. Tebecca and W. Steven, S., “Characterization of traverse slippage experienced by spirit rover on husband hill at gusev crater,” J. Geophys. Res. Planets 113(E12), (2008) pp. 1–16.CrossRefGoogle Scholar
Ocón, J., Buckley, K., Colmenero, F., Bensalem, S., Dragomir, I., Karachalios, S., Woods, M., Pommerening, F. and Keller, T., “Using the Ergo Framework for Space Robotics in a Planetary and an Orbital Scenario,”14th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS) (2018) pp. 46.Google Scholar
Ding, L., Gao, H., Deng, Z., Yoshida, K. and Nagatani, K., “Slip Ratio for Lugged Wheel of Planetary Rover in Deformable Soil: Definition and Estimation,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009) pp. 33433348.Google Scholar
Andrade, G., Amar, F. B., Bidaud, P. and Chatila, R., “Modeling Robot-Soil Interaction for Planetary Rover Motion Control,” Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications, vol. 1 (1998) pp. 576581.Google Scholar
Focchi, M., Barasuol, V., Frigerio, M., Caldwell, D. G. and Semini, C., “Slip Detection and Recovery for Quadruped Robots,” ISRR (2015).Google Scholar
Bjelonic, M., Sankar, P. K., Bellicoso, C. D., Vallery, H. and Hutter, M., “Rolling in the deep–hybrid locomotion for wheeled-legged robots using online trajectory optimization,” IEEE Rob. Autom. Lett. 5(2), 36263633 (2020).CrossRefGoogle Scholar
Inotsume, H., Sutoh, M., Nagaoka, K., Nagatani, K. and Yoshida, K., “Modeling, analysis, and control of an actively reconfigurable planetary rover for traversing slopes covered with loose soil,” J. Field Rob. 30(6), 875896 (2013).CrossRefGoogle Scholar
Ding, L., Gao, H., Deng, Z., Song, J., Liu, Y., Liu, G. and Iagnemma, K., “Foot–terrain interaction mechanics for legged robots: Modeling and experimental validation,” Int. J. Rob. Res. 32(13), 15851606 (2013).CrossRefGoogle Scholar
Lyu, S., Zhang, W., Yao, C., Zhu, Z. and Jia, Z., “Modeling and analysis of a reconfigurable rover for improved traversing over soft sloped terrains,” Biomimetics 8(1), 131 (2023).CrossRefGoogle ScholarPubMed
Hu, Y., Wang, X., Liu, Y., Ding, W. and Knoll, A., “Pi-elm: Reinforcement learning-based adaptable policy improvement for dynamical system,” Inf. Sci. 650 (C), 119700 (2023).CrossRefGoogle Scholar
Gonzalez, R., Apostolopoulos, D. and Iagnemma, K., “Slippage and immobilization detection for planetary exploration rovers via machine learning and proprioceptive sensing,” J. Field Rob. 35(2), 231247 (2018).CrossRefGoogle Scholar
Gonzalez, R., Fiacchini, M. and Iagnemma, K., “Slippage prediction for off-road mobile robots via machine learning regression and proprioceptive sensing,” Rob. Auton. Syst. 105 (1), 8593 (2018).Google Scholar
Yao, C., Xue, F., Wang, Z., Yuan, Y., Zhu, Z., Ding, L. and Jia, Z., “Wheel vision: Wheel-terrain interaction measurement and analysis using a sensorized transparent wheel on deformable terrains,” IEEE Rob. Autom. Lett. 8(12), 79387945 (2023).CrossRefGoogle Scholar
Reina, G., “Methods for wheel slip and sinkage estimation in mobile robots,” In Hanafiah Yussof, editor, Robot Localization and Map Building, chapter 28. IntechOpen (2010).Google Scholar
Buchanan, R., Camurri, M., Dellaert, F. and Fallon, M., “Learning Inertial Odometry for Dynamic Legged Robot State Estimation,” Conference on Robot Learning (PMLR) pp. 15751584.Google Scholar
Fink, G. and Semini, C., “Proprioceptive Sensor Fusion for Quadruped Robot State Estimation,” 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020) pp. 1091410920.CrossRefGoogle Scholar
Zhang, W., Lyu, S., Xue, F., Yao, C., Zhu, Z. and Jia, Z., “Predict the rover mobility over soft terrain using articulated wheeled bevameter,” IEEE Rob. Autom. Lett. 7(4), 1206212069 (2022).CrossRefGoogle Scholar
Walas, K., Kanoulas, D. and Kryczka, P., “Terrain Classification and Locomotion Parameters Adaptation for Humanoid Robots Using Force/Torque Sensing,” 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (IEEE, 2016) pp. 133140.CrossRefGoogle Scholar
Buchanan, R., Bednarek, J., Camurri, M., Nowicki, M.ł R., Walas, K. and Fallon, M., “Navigating by touch: Haptic Monte Carlo localization via geometric sensing and terrain classification,” Auton. Rob. 45(6), 115 (2021).CrossRefGoogle Scholar
Prágr, M., Čížek, P. and Faigl, J., “Traversal Cost Modeling Based on Motion Characterization for Multi-legged Walking Robots,” 2019 European Conference on Mobile Robots (ECMR) (IEEE, 2019) pp. 16.CrossRefGoogle Scholar
Richard, A., “Mars rover trapped in sand, but what can end a mission?,” Science. 324(5930), 998–998 (2009).Google Scholar
Inotsume, H., Kubota, T. and Wettergreen, D., “Robust path planning for slope traversing under uncertainty in slip prediction,” IEEE Rob. Autom. Lett. 5(2), 33903397 (2020).CrossRefGoogle Scholar
Camurri, M., Fallon, M., Bazeille, S., Radulescu, A., Barasuol, V., Caldwell, D. G. and Semini, C., “Probabilistic contact estimation and impact detection for state estimation of quadruped robots,” IEEE Rob. Autom. Lett. 2(2), 10231030 (2017).CrossRefGoogle Scholar
Nisticò, Y., Fahmi, S., Pallottino, L., Semini, C. and Fink, G., “On slip detection for quadruped robots,” Ah S Sens. 22(8), 2967 (2022).CrossRefGoogle ScholarPubMed
Kolvenbach, H., Bärtschi, C., Wellhausen, L., Grandia, R. and Hutter, M., “Haptic inspection of planetary soils with legged robots,” IEEE Rob. Autom. Lett. 4(2), 16261632 (2019).CrossRefGoogle Scholar
Marotta, R., Ivanov, V., Strano, S., Terzo, M. and Tordela, C., “Deep Learning for the Estimation of the Longitudinal Slip Ratio,” 2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive) (2023) pp. 193198.Google Scholar