Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-03T13:14:23.418Z Has data issue: false hasContentIssue false

Adaptive fractional-order integral fast terminal sliding mode and fault-tolerant control of dual-arm robots

Published online by Cambridge University Press:  07 March 2024

Le Anh Tuan*
Affiliation:
Vietnam Maritime University, Haiphong, Vietnam
Quang Phuc Ha
Affiliation:
Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
*
Corresponding author: Le Anh Tuan; Email: tuanla.ck@vimaru.edu.vn

Abstract

Closed-loop kinematics of a dual-arm robot (DAR) often induces motion conflict. Control formulation is increasingly difficult in face of actuator failures. This article presents a new approach for fault-tolerant control of DARs based on advanced sliding mode control. A comprehensive fractional-order model is proposed taking nonlinear viscous and viscoelastic friction at the joints into account. Using integral fast terminal sliding mode control and fractional calculus, we develop two robust controllers for robots subject to motor faults, parametric uncertainties, and disturbances. Their merits rest with their strong robustness, speedy finite-time convergence, shortened reaching phase, and flexible selection of derivative orders. To avoid the need for full knowledge of faults, robot parameters, and disturbances, two versions of the proposed approach, namely adaptive integral fractional-order fast terminal sliding mode control, are developed. Here, an adaptation mechanism is equipped for estimating a common representative of individual uncertainties. Simulation and experiment are provided along with an extensive comparison with existing approaches. The results demonstrate the superiority of the proposed control technique. The robot performs well the tasks with better responses (e.g., with settling time reduced by at least 16%).

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, M. and Dwivedy, S., “Adaptive control for networked uncertain cooperative dual-arm manipulators: An event-triggered approach,” Robotica 40(6), 19511978 (2022).CrossRefGoogle Scholar
Hu, H., Cao, J. and Cao, Y., “Prescribed time tracking control without velocity measurement for dual-arm robots,” Inf. Sci. 629, 533550 (2023).CrossRefGoogle Scholar
Lv, N., Liu, J. and Jia, Y., “Dynamic modeling and control of deformable linear objects for single-arm and dual-arm robot manipulations,” IEEE Trans. Robot. 38(4), 23412353 (2022).CrossRefGoogle Scholar
Korayem, M. H., Shafei, A. M. and Sidei, E., “Symbolic derivation of governing equations for dual-arm mobile manipulators used in fruit-picking and the pruning of tall trees,” Comput. Electron. Agric. 105, 95102 (2014).CrossRefGoogle Scholar
Ghaf-Ghanbari, P., Mazare, M. and Taghizadeh, M., “Active fault-tolerant control of a schonn̈flies parallel manipulator based on time delay estimation,” Robotica 39(8), 15181535 (2021).CrossRefGoogle Scholar
Van, M. and Ge, S. S., “Adaptive fuzzy integral sliding mode control for robust fault tolerant control of robot manipulators with disturbance observer,” IEEE Trans. Fuzzy Syst. 29(5), 12841296 (2021).CrossRefGoogle Scholar
Korayem, A. H., Nekoo, S. R. and Korayem, M. H., “Sliding mode control design based on the state-dependent Riccati equation: Theoretical and experimental robotic implementation,” Int. J. Control 92(9), 21362149 (2019).CrossRefGoogle Scholar
Yan, W., Liu, Y., Lan, Q., Zhang, T. and Tu, H., “Trajectory planning and low-chattering fixed-time nonsingular terminal sliding mode control for a dual-arm free-floating space robot,” Robotica 40(3), 625645 (2022).CrossRefGoogle Scholar
Van, M., Do, X. P. and Mavrovouniotis, M., “Self-tuning fuzzy PID-nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators,” ISA Trans. 96, 6068 (2020).CrossRefGoogle ScholarPubMed
Singh, A. M. and Ha, Q. P., “Fast terminal sliding control application for second-order underactuated systems,” Int. J. Control Autom. Syst. 17(8), 18841898 (2019).CrossRefGoogle Scholar
Qin, Q. and Gao, G., “Screw dynamic modeling and novel composite error-based second-order sliding mode dynamic control for a bilaterally symmetrical hybrid robot,” Robotica 39(7), 12641280 (2021).CrossRefGoogle Scholar
Dong, H., Yang, X. and Basin, M. V., “Practical tracking of permanent magnet linear motor via logarithmic sliding mode control,” IEEE/ASME Trans. Mechatron. 27(5), 41124121 (2022).CrossRefGoogle Scholar
Fu, X., Ai, H. and Chen, L., “Integrated sliding mode control with input restriction, output feedback and repetitive learning for space robot with flexible-base, flexible-link and flexible-joint,” Robotica 41(1), 370391 (2023).CrossRefGoogle Scholar
Li, F., Zhang, Z., Wu, Y., Chen, Y., Liu, K. and Yao, J., “Improved fuzzy sliding mode control in flexible manipulator actuated by PMAs,” Robotica 40(8), 26832696 (2022).CrossRefGoogle Scholar
Xie, L., Yu, X. and Chen, L., “Robust fuzzy sliding mode control and vibration suppression of free-floating flexible-link and flexible-joints space manipulator with external interference and uncertain parameter,” Robotica 40(4), 9971019 (2022).CrossRefGoogle Scholar
Wang, Y., Gu, L., Xu, Y. and Cao, X., “Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode,” IEEE Trans. Ind. Electron. 63(10), 61946204 (2016).CrossRefGoogle Scholar
Jie, W., Yudong, Z., Yulong, B., Kim, H. H. and Lee, M. C., “Trajectory tracking control using fractional-order terminal sliding mode control with sliding perturbation observer for a 7-DOF robot manipulator,” IEEE/ASME Trans. Mechatron. 25(4), 18861893 (2020).CrossRefGoogle Scholar
Yu, X., Guo, J. and Zhang, J., “Time delay estimation-based reactionless augmented adaptive sliding mode control of a space manipulator’s pregrasping a target,” Robotica 40(9), 31363156 (2022).CrossRefGoogle Scholar
Tuan, L. A., Joo, Y. H., Duong, P. X. and Tien, L. Q., “Parameter estimator integrated-sliding mode control of dual arm robots,” Int. J. Control Autom. Syst. 15(6), 27542763 (2017).CrossRefGoogle Scholar
Liu, Z., Chen, C., Zhang, Y. and Chen, C. L. P., “Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism,” IEEE Trans. Cybern. 45(3), 521532 (2015).Google ScholarPubMed
Tuan, L. A., Joo, Y. H., Tien, L. Q. and Duong, P. X., “Adaptive neural network second-order sliding mode control of dual arm robots,” Int. J. Control Autom. Syst. 15(6), 22832298 (2017).Google Scholar
Jiang, Y., Y. Wang, Z. Miao, J. Na, Z. Zhao and C. Yang, “Composite-learning-based adaptive neural control for dual-arm robots with relative motion,” IEEE Trans. Neural Netw. Learn. Syst. 33(3), 1010–1021 (2022).Google Scholar
Li, Z., Yuan, W., Zhao, S., Yu, Z., Kang, Y. and Chen, C. L. P., “Brain-actuated control of dual-arm robot manipulation with relative motion,” IEEE Trans. Cogn. Devel. Syst. 11(1), 5162 (2019).CrossRefGoogle Scholar
Huang, B., Li, Z., Wu, X., Ajoudani, A., Bicchi, A. and Liu, J., “Coordination control of a dual-arm exoskeleton robot using human impedance transfer skills,” IEEE Trans. Syst., Man, Cybern., Syst. 49(5), 954963 (2019).CrossRefGoogle Scholar
Li, Z., Xu, C., Wei, Q., Shi, C. and Su, C. -Y., “Human-inspired control of dual-arm exoskeleton robots with force and impedance adaptation,” IEEE Trans. Syst., Man, Cybern., Syst. 50(12), 52965305 (2020).CrossRefGoogle Scholar
Kochubei, A. and Luchko, Y., Handbook of Fractional Calculus with Applications (De Gruyter, Berlin, Germany, 2019).Google Scholar
Raoufi, M. and Delavari, H., “Experimental implementation of a novel model-free adaptive fractional-order sliding mode controller for a flexible-link manipulator, int,” J. Adapt. Control. Signal. Process. 35(10), 19902006 (2021).CrossRefGoogle Scholar
Delavari, H. and Jokar, R., “Intelligent fractional-order active fault-tolerant sliding mode controller for a knee joint orthosis,” J. Intell. Robot. Syst. 102(39) (2021).CrossRefGoogle Scholar
Ma, Z., Liu, Z., Huang, P. and Kuang, Z., “Adaptive fractional-order sliding mode control for admittance-based telerobotic system with optimized order and force estimation,” IEEE Trans. Ind. Electron. 69(5), 51655174 (2022).CrossRefGoogle Scholar
Trieu, P. V., Cuong, H. M., Dong, H. Q., Tuan, N. H. and Tuan, L. A., “Adaptive fractional-order fast terminal sliding mode with fault-tolerant control for underactuated mechanical systems: Application to tower cranes,” Autom. Constr. 123, 103533 (2021).CrossRefGoogle Scholar
Yang, C., Jiang, Y., Na, J., Li, Z., Cheng, L. and Su, C., “Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics,” IEEE Trans. Fuzzy Syst. 27(3), 574588 (2019).CrossRefGoogle Scholar
Hacioglu, Y., Arslan, Y. Z. and Yagiz, N., “MIMO fuzzy sliding mode controlled dual arm robot in load transportation,” J. Frankl. Inst.-Eng. Appl. Math. 348(8), 18861902 (2011).CrossRefGoogle Scholar
Li, Y., Chen, Y. Q. and Podlubny, I., “Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability,” Comput. Math. Appl. 59(5), 18101821 (2010).CrossRefGoogle Scholar
Khalil, H. K., Nonlinear Systems (3rd edn.) (Pearson, 2002).Google Scholar
Mermoud, M. A. D., Aguila-Camacho, N., Gallegos, J. A. and Castro-Linares, R., “Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems,” Commun. Nonlinear Sci. Numer. Simul. 22(1), 650659 (2015).CrossRefGoogle Scholar
A.-Camacho, N., Mermoud, M. A. D. and Gallegos, J. A., “Lyapunov functions for fractional order systems, commun,” Nonlinear Sci. Numer. Simul. 19(9), 29512957 (2014).CrossRefGoogle Scholar
Yu, S., Yu, X., Shirinzadeh, B. and Man, Z., “Continuous finite time control for robotic manipulators with terminal sliding mode,” Automatica 41(11), 19571964 (2005).CrossRefGoogle Scholar