Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-29T06:46:24.319Z Has data issue: false hasContentIssue false

Configuration comparison among kinematically optimized continuum manipulators for robotic surgeries through a single access port

Published online by Cambridge University Press:  29 April 2014

Kai Xu*
Affiliation:
RII Lab (Lab of Robotics Innovation and Intervention), UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China
Jiangran Zhao
Affiliation:
RII Lab (Lab of Robotics Innovation and Intervention), UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China
Xidian Zheng
Affiliation:
RII Lab (Lab of Robotics Innovation and Intervention), UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China
*
*Corresponding author: E-mail: k.xu@sjtu.edu.cn

Summary

Many recent developments of surgical robots focus on less invasive paradigms, such as laparoscopic SPA (Single Port Access) surgery, NOTES (Natural Orifice Translumenal Endoscopic Surgery), laryngoscopic MIS (Minimally Invasive Surgery), etc. A configuration similarity shared by these surgical robots is that two or more manipulators are inserted through one access port (a laparoscope, an endoscope, or a laryngoscope) for surgical interventions. However, upon designing such a surgical robot, the structure of the inserted manipulators has not been thoroughly explored based on evaluation of their performances. This paper presents a comparison for kinematic performances among three different continuum manipulators. They all could be applied in the aforementioned surgical robots. The structural parameters of these continuum manipulators are firstly optimized to assure a more fair and consistent comparison. This study is conducted in a dimensionless manner and provides scalable results for a wide spectrum of continuum manipulator designs as long as their segments have a constant curvature. The results could serve as a design reference for future developments of surgical robots which use one access port and continuum mechanisms.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Howe, R. D. and Matsuoka, Y., “Robotics for surgery,” Annu. Rev. Biomed. Eng. 1, 211420 (1999).Google Scholar
2. Dario, P., Hannaford, B. and Menciassi, A., “Smart surgical tools and augmenting devices,” IEEE Trans. Robot. Autom. 19 (5), 782792 (2003).Google Scholar
3. Taylor, R. H., “A Perspective on Medical Robotics,” Proc. IEEE 94 (9), 16521664 (2006).Google Scholar
4. Pisla, D., Gherman, B., Vaida, C. and Plitea, N., “Kinematic modelling of a 5-DOF hybrid parallel robot for laparoscopic surgery,” Robotica 30 (07), 10951107 (2012).Google Scholar
5. Pisla, D., Gherman, B., Vaida, C., Suciu, M. and Plitea, N., “An active hybrid parallel robot for minimally invasive surgery,” Robot. Comput. Integr. Manuf. 29 (4), 203221 (2013).Google Scholar
6. Navarra, G., Pozza, E., Occhionorelli, S., Carcoforo, P. and Donini, I., “One-wound laparoscopic cholecystectomy,” Br. J. Surg. 84 (5), 695 (1997).Google Scholar
7. Giday, S. A., Kantsevoy, S. V. and Kalloo, A. N., “Principle and History of Natural Orifice Translumenal Endoscopic Surgery (NOTES),” Minimally Invasive Ther. Allied Technol. 15 (6), 373377 (2006).Google Scholar
8. Plinkert, P. and Lowenheim, H., “Trends and perspectives in minimally invasive surgery in otorhinolaryngology-head and neck surgery,” Laryngoscope 107, 14831489 (1997).Google Scholar
9. Xu, K., Goldman, R. E., Ding, J., Allen, P. K., Fowler, D. L. and Simaan, N., “System Design of an Insertable Robotic Effector Platform for Single Port Access (SPA) Surgery,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA (2009) pp. 55465552.Google Scholar
10. Ding, J., Xu, K., Goldman, R., Allen, P. K., Fowler, D. L. and Simaan, N., “Design, Simulation and Evaluation of Kinematic Alternatives for Insertable Robotic Effectors Platforms in Single Port Access Surgery,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA (2010) pp. 10531058.Google Scholar
11. Ding, J., Goldman, R. E., Xu, K., Allen, P. K., Fowler, D. L. and Simaan, N., “Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery,” IEEE/ASME Trans. Mechatronics 18 (5), 16121624 (2013).Google Scholar
12. Piccigallo, M., Scarfogliero, U., Quaglia, C., Petroni, G., Valdastri, P., Menciassi, A. and Dario, P., “Design of a novel bimanual robotic system for single-port laparoscopy,” IEEE/ASME Trans. Mechatronics 15 (6), 871878 (2010).Google Scholar
13. Sekiguchi, Y., Kobayashi, Y., Tomono, Y., Watanabe, H., Toyoda, K., Konishi, K., Tomikawa, M., Ieiri, S., Tanoue, K., Hashizume, M. and Fujie, M. G., “Development of a Tool Manipulator Driven by a Flexible Shaft for Single Port Endoscopic Surgery,” Proceedings of the IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB), Tokyo, Japan (2010) pp. 120125.Google Scholar
14. Lee, H., Choi, Y. and Yi, B.-J., “Stackable 4-BAR manipulators for single port access surgery,” IEEE/ASME Trans. Mechatronics 17 (1), 157166 (2012).Google Scholar
15. Simi, M., Silvestri, M., Cavallotti, C., Vatteroni, M., Valdastri, P., Menciassi, A. and Dario, P., “Magnetically activated stereoscopic vision system for laparoendoscopic single-site surgery,” IEEE/ASME Trans. Mechatronics 18 (3), 11401151 (2013).Google Scholar
16. Degani, A., Choset, H., Wolf, A. and Zenati, M. A., “Highly Articulated Robotic Probe for Minimally Invasive Surgery,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida (2006) pp. 41674172.Google Scholar
17. Abbott, D. J., Becke, C., Rothstein, R. I. and Peine, W. J., “Design of an Endoluminal NOTES Robotic System,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego, CA, USA (2007) pp. 410416.Google Scholar
18. Lehman, A. C., Dumpert, J., Wood, N. A., Redden, L., Visty, A. Q., Farritor, S., Varnell, B. and Oleynikov, D., “Natural orifice cholecystectomy using a miniature robot,” Surgical Endoscopy 23 (2), 260266 (2009).Google Scholar
19. Harada, K., Susilo, E., Menciassi, A. and Dario, P., “Wireless Reconfigurable Modules for Robotic Endoluminal Surgery,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan (2009) pp. 26992704.Google Scholar
20. Xu, K., Zhao, J., Geiger, J., Shih, A. J. and Zheng, M., “Design of an Endoscopic Stitching Device for Surgical Obesity Treatment Using a NOTES Approach,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA (2011) pp. 961966.Google Scholar
21. Zhao, J., Zheng, X., Zheng, M., Shih, A. J. and Xu, K., “An Endoscopic Continuum Testbed for Finalizing System Characteristics of a Surgical Robot for NOTES Procedures,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia (2013) pp. 6370.Google Scholar
22. Simaan, N., Xu, K., Kapoor, A., Wei, W., Kazanzides, P., Flint, P. and Taylor, R. H., “Design and integration of a telerobotic system for minimally invasive surgery of the throat,” Int. J. Robot. Res. 28 (9), 11341153 (2009).Google Scholar
23. Xu, K. and Zheng, X., “Configuration Comparison for Surgical Robotic Systems Using a Single Access Port and Continuum Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA (2012) pp. 33673374.Google Scholar
24. Xu, K. and Simaan, N., “Intrinsic wrench estimation and its performance index of multi-segment continuum robots,” IEEE Trans. Robot. 26 (3), 555561 (2010).Google Scholar
25. Hirose, S., Biologically Inspired Robots, Snake-Like Locomotors and Manipulators (Oxford University Press, Oxford, 1993).Google Scholar
26. Gravagne, I. A. and Walker, I. D., “Uniform Regulation of a Multi-Section Continuum Manipulator,” IEEE International Conference on Robotics and Automation (ICRA), Washington, DC, USA (2002) pp. 15191524.Google Scholar
27. Camarillo, D. B., Carlson, C. R. and Salisbury, J. K., “Configuration tracking for continuum manipulators with coupled tendon drive,” IEEE Trans. Robot. 25 (4), 798808 (2009).Google Scholar
28. Vaida, C., Plitea, N., Pisla, D. and Gherman, B., “Orientation module for surgical instruments — A systematical approach,” Meccanica 48 (1), 145158 (2013).Google Scholar
29. Yoshikawa, T., “Manipulability of robotic mechanisms,” Int. J. Robot. Res. 4 (2), 39 (1985).Google Scholar
30. Klein, C. A. and Blaho, B. E., “Dexterity measures for the design and control of kinematically redundant manipulators,” Int. J. Robot. Res. 6 (2), 7283 (1987).Google Scholar
31. Angeles, J. and López-Cajún, C. S., “Kinematic isotropy and the conditioning index of serial robotic manipulators,” Int. J. Robot. Res. 11 (6), 560571 (1992).Google Scholar
32. Merlet, J. P., “Determination of the orientation workspace of parallel manipulators,” J. Intell. Robot. Syst. 13, 143160 (1995).Google Scholar
33. Carbone, G., Ottaviano, E. and Ceccarelli, M., “An Optimum Design Procedure for Both Serial and Parallel Manipulators,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221 (7), 829843 (2007).Google Scholar
34. Xu, K. and Simaan, N., “An investigation of the intrinsic force sensing capabilities of continuum robots,” IEEE Trans. Robot. 24 (3), 576587 (2008).Google Scholar
35. Jones, B. A. and Walker, I. D., “Kinematics for multisection continuum robots,” IEEE Trans. Robot. Autom. 22 (1), 4355 (2006).Google Scholar
36. Webster, R. J. and Jones, B. A., “Design and kinematic modeling of constant curvature continuum robots: A review,” Int. J. Robot. Res. 29 (13), 16611683 (2010).Google Scholar
37. Chirikjian, G. S. and Burdick, J. W., “A modal approach to hyper-redundant manipulator kinematics,” IEEE Trans. Robot. Autom. 10 (3), 343354 (1994).Google Scholar
38. Chirikjian, G. S. and Burdick, J. W., “Kinematically optimal hyper-redundant manipulator configurations,” IEEE Trans. Robot. Autom. 11 (6), 794806 (1995).Google Scholar
39. Zanganeh, K. and Angeles, J., “The Inverse Kinematics of Hyper-Redundant Manipulators Using Splines,”IEEE International Conference on Robotics and Automation (ICRA), Nagoya, Japan (1995) pp. 27972802.Google Scholar
40. Xu, K. and Simaan, N., “Analytic formulation for the kinematics, statics and shape restoration of multibackbone continuum robots via elliptic Integrals,” J. Mech. Robot. 2, (2010).Google Scholar
41. Chitrakaran, V. K., Behal, A., Dawson, D. M. and Walker, I. D., “Setpoint Regulation of Continuum Robots Using a Fixed Camera,” American Control Conference, Boston, Massachusetts, USA (2004) pp. 15041509.Google Scholar
42. Rucker, D. C. and Webster, R. J., “Statics and dynamics of continuum robots with general tendon routing and external loading,” IEEE Trans. Robot 27 (6), 10331044 (2011).Google Scholar
43. Bohigas, O., Manubens, M. and Ros, L., “A complete method for workspace boundary determination on general structure manipulators,” IEEE Trans. Robot. 28 (5), 9931006 (2012).Google Scholar
44. Berber, E., Engle, K. L., Garland, A., String, A., Foroutani, A., Pearl, J. M. and Siperstein, A. E., “A Critical analysis of intraoperative time utilization in laparoscopic cholecystectomy,” Surgical Endoscopy 15 (2), 161165 (2004).Google Scholar
45. Whitney, D. E., “Resolved motion rate control of manipulators and human prostheses,” IEEE Trans. Man-Mach. Syst. 10 (2), 4753 (1969).Google Scholar