Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T09:26:40.069Z Has data issue: false hasContentIssue false

Formally certified floating-point filters for homogeneous geometric predicates

Published online by Cambridge University Press:  24 April 2007

Guillaume Melquiond
Affiliation:
Laboratoire de l'informatique du parallélisme, UMR 5668 CNRS, ENS Lyon, INRIA, UCBL, 46 allée d'Italie, 69364 Lyon Cedex 07, France; Guillaume.Melquiond@ens-lyon.fr
Sylvain Pion
Affiliation:
INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis, France; Sylvain.Pion@sophia.inria.fr
Get access

Abstract

Floating-point arithmetic provides a fast but inexact way of computing geometric predicates. In order for these predicates to be exact, it is important to rule out all the numerical situations where floating-point computations could lead to wrong results. Taking into account all the potential problems is a tedious work to do by hand. We study in this paper a floating-point implementation of a filter for the orientation-2 predicate, and how a formal and partially automatized verification of this algorithm avoided many pitfalls. The presented method is not limited to this particular predicate, it can easily be used to produce correct semi-static floating-point filters for other geometric predicates.

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brönnimann, H., Burnikel, C. and Pion, S., Interval arithmetic yields efficient dynamic filters for computational geometry. Discrete Appl. Math. 109 (2001) 2547. CrossRef
Burnikel, C., Funke, S. and Seel, M., Exact geometric computation using cascading. Internat. J. Comput. Geom. Appl. 11 (2001) 245266. CrossRef
The CGAL Manual, 2004. Release 3.1.
M. Daumas and G. Melquiond, Generating formally certified bounds on values and round-off errors, in 6th Conference on Real Numbers and Computers. Dagstuhl, Germany (2004).
O. Devillers and S. Pion, Efficient exact geometric predicates for Delaunay triangulations, in Proc. 5th Workshop Algorithm Eng. Exper. (2003) 37–44.
Fortune, S. and Van Wyk, C.J., Static analysis yields efficient exact integer arithmetic for computational geometry. ACM Trans. Graph. 15 (1996) 223248. CrossRef
S. Fortune and C.V. Wyk, LN User Manual. AT&T Bell Laboratories (1993).
L. Kettner, K. Mehlhorn, S. Pion, S. Schirra and C. Yap, Classroom examples of robustness problems in geometric computations, in Proc. 12th European Symposium on Algorithms, Lect. Notes Comput. Sci. 3221 (2004) 702–713. CrossRef
A. Nanevski, G. Blelloch and R. Harper, Automatic generation of staged geometric predicates, in International Conference on Functional Programming, Florence, Italy (2001). Also Carnegie Mellon CS Tech Report CMU-CS-01-141.
A. Neumaier, Interval methods for systems of equations. Cambridge University Press (1990).
S. Pion, De la géométrie algorithmique au calcul géométrique. Thèse de doctorat en sciences, Université de Nice-Sophia Antipolis, France (1999). TU-0619.
Shewchuk, J.R., Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Comput. Geom. 18 (1997) 305363. CrossRef
Stevenson, D. et al., An American national standard: IEEE standard for binary floating point arithmetic. ACM SIGPLAN Notices 22 (1987) 925.
C.K. Yap, T. Dubé, The exact computation paradigm, in Computing in Euclidean Geometry, edited by D.-Z. Du and F.K. Hwang, World Scientific, Singapore, 2nd edition, Lect. Notes Ser. Comput. 4 (1995) 452–492.