Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T06:34:17.071Z Has data issue: false hasContentIssue false

Role and uncertainty of foliar transfer in radiological impact assessments: State of the art and future actions

Published online by Cambridge University Press:  06 June 2009

C. Madoz-Escande*
Affiliation:
IRSN/DEI/SECRE, BP. 3, 13115 St. Paul-lez-Durance Cedex, France
E. Leclerc
Affiliation:
ANDRA/DS-TR, French Agency for Radioactive Waste Management, Parc de la Croix Blanche, 1 rue Jean Monnet, Châtenay-Malabry Cedex, France
C. Colle
Affiliation:
IRSN/DEI/SECRE, BP. 3, 13115 St. Paul-lez-Durance Cedex, France
P. Hurtevent
Affiliation:
IRSN/DEI/SECRE, BP. 3, 13115 St. Paul-lez-Durance Cedex, France
Get access

Abstract

Sensitivity analyses have shown major role of foliar transfer for many radionuclides in the context of radiological impact assessments. A review of the published literature about foliar transfer focusing on translocation factors was carried out in order to constitute an updated database on one hand and to use the appropriate existing values of translocation parameters for modeling on the other. Translocation describes the distribution of radionuclides within the plant after foliar deposition and radionuclide absorption onto the surface of leaves. It mainly depends on elements and the plant growth stage. The collected data was derived from both in-field and greenhouse experiments. It was analysed to select those coming from a contamination simulating sprinkling irrigation or rain.

This work not only allowed us to carry out a diagnosis on the values themselves but also enabled us to ascertain missing data needs. In order to compensate for the lack of data on important radionuclides concerning radioactive waste (129I, 36Cl, 79Se), experimental studies have been launched.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarkrog A. Translocation of radionuclides in cereal crops. Ecological aspects of radionuclides releases. Oxford Blackwell scientific Publishers (1983): 81–90.
Hoffman F. O., Thiessen K. M., Rael R. M. Comparison of interception and initial retention of wet-deposited contaminants on leaves of different vegetation types. Atmospheric Environment (1995) 29 (15): 1771–1775.
Kinnersley R. P. and. Scott L. K Aerial contamination of fruit through wet deposition and particulate dry deposition. Journal of Environmental Radioactivity (2001) 52 (2–3): 191–213.
Muller H. and Pröhl G. Ecosys-87: A dynamic model for assessing radiological consequences of nuclear accidents. Health Physics (1993) 64 (3): 232–252.
Bukovac M. J., Wittwer S. H., Tukey H. B. Above ground plant parts as a pathway for entry of fission products into the food chain with special reference to 89-90Sr and 137Cs. In: Radioactive fallout, soils, plants, foods, man. E. Fowler, Ed. Elsevier Press New York, (1965): 82–109.
Franke W. Mechanisms of foliar penetration of solutions. Ann. Rev. plant phys. (1967) 18, 281–300.
Aarkrog A. On the direct contamination of rye, barley, wheat and oats with Sr-85, Cs-134, Mn-54 and Ce141. Radiation Botany (1969) 9: 357–366.
Aarkrog A. and Lippert J. Direct contamination of barley with Cr-51, Fe-59, Co-58, Zn-65, Hg-203 and Pb-210. Radiation Botany (1971) 11: 463–472.
Aarkrog A. Direct contamination of barley with Be-7, Na-22, Cd-115, Sb-125, Cs-134 and Ba-133. Risoe report No. 256. Danish Atomic Energy Commission (1972): 163–175.
Aarkrog A. Radionuclide levels in mature grain related to radiostrontium content and time of direct contamination. Health Physics (1975) 28: 557–562.
Carini F. Radionuclides in plants bearing fruit: an overview. JER (1999) 46(1): 77–97.
Carini F., Green N., Spalla S. Radionuclides in fruit systems: A review of experimental studies. Science of The Total Environment (2006) 359(1–3): 188–193.
Middleton L. J. Absorption and translocation of strontium and caesium by plants from foliar sprays. Nature (1958) 181: 1300–1303.
Middleton L. J. Radioactive strontium and caesium in the edible parts of crop plants after foliar contamination. Inter. J. Rad (1959) 4: 387–402.
Middleton L. J. and. Squire H. M Further studies of radioactive strontium and caesium in agricultural crops after direct contamination. Int. J. Rad. Biol. (1963) 6(6): 549–558.
Shaw G., Minski M. J., Bell J. N. B. Retention, loss and translocation of radionuclides applied to foliar surfaces of wheat. Environmental and Experimental Botany (1992) 32(4): 391–404.
Madoz-Escande C., Henner P., Bonhomme T. Foliar contamination of Phaseolus vulgaris with aerosols of 137Cs, 85Sr, 133Ba and 123mTe: influence of plant development stage upon contamination and rain. JER (2004) 73(1): 49–71.
Choi Y. H, Lim K. M., Yu D., Park H. G., Choi Y. G., Lee C. M. Transfer pathways of 54Mn, 57Co, 85Sr, 103Ru and 134Cs in rice and radish plants directly contaminated at different growth stages. Ann. of Nuc. Ener. (2002) 29(4): 429–446.
Colle C., Madoz-Escande C., Leclerc E. Foliar transfer into the biosphere: review of translocation factors to cereals grains, JER, Special issue for AIEA/EMRAS program/Revision of Tech. Report Series n°364, submitted.
Gerdung S., Pöllot M., Fischer P., Grillmaier R. E., Müller P. Contamination of wheat, rye, and potatoes by foliar application of 134Cs. Journal of Radioanalytical and Nuclear Chemistry (1999) 240(2): 451–454.
Voigt G., Pröhl G., Müller H. Experiments on the seasonality of the cesium translocation in cereals, potatoes and vegetables. Radiation and Environmental Biophysics (1991) 30(4): 295–303.
Madoz-Escande C. and Santucci P. Weather-dependent change of cesium, strontium, barium and tellurium contamination deposited as aerosols on various cultures. JER (2005) 84(3): 417–439.
Baeza A., Paniagua J. M., Rufo M., Sterling A., Barandica J. Radiocaesium and radiostrontium uptake by turnips and broad beans via leaf and root absorption. Applied Radiation and Isotopes (1999) 50(3): 467–474.
Madoz-Escande C. Bonhomme T., Poncet-Bonnard D. Foliar contamination of plants with aerosols of 137Cs, 85Sr, 133Ba and 123mTe: Influence of rain. Radioprotection (2005) 40(Suppl.1): S421–S427.
Delmas J., Disdier R., Grauby A., Bovard P.. Radiocontamination expérimentale de quelques espèces cultivées soumises à l'irrigation par aspersion. In: Actes Ie Symp. Intern. de Radioéc., C.E.N. Cadarache, 8-12 sept. 1969: 707–729.
Brambilla M., Fortunati P., Carini F. Foliar and root uptake of 134Cs, 85Sr and 65Zn in processing tomato plants (Lycopersicon esculentum Mill.). JER (2002) 60(3): 351–363.
Carini, F., Anguissola Scotti I., Montruccoli M., Silva S. 134Cs foliar contamination of vine: translocation to grapes and transfer to wine. In M. Gerzabek (Ed) Internat. Symp. of Radioec. 10 years terrest. Radioecol. research follow. the Chernobyl accident. Vienna, Aust.: Aust. Soil Science Soc. and Fed. Envir. Agency. (1996): 163–169.
Carini F. and Lombi E. Foliar and soil uptake of 134Cs and 85Sr by grape vines. Science of the Total Environment (1997) 207(2–3): 157–164.
Carini F., Brambilla M., Mitchell N., Ould-Dada Z. Cesium-134 and Strontium-85 in Strawberry Plants following Wet Aerial Deposition. Journal of Environmental Quality (2003) 32(6): 2254–2264.
Macacini J. F., De Nadai Fernandes E. A., Taddei M. H. T. Translocation studies of 137Cs and 90Sr in bean plants (Phaseolus vulgaris): simulation of fallout. Environmental Pollution (2002) 120(1): 151–155.
Oncsik M. B., Eged K., Kis Z., Kanyar B. A validation study for the transport of 134Cs to strawberry. JER (2002). 61(3): 319–329.
Madoz-Escande C., Colle C., Adam C. Evolution of cesium and strontium contamination deposited on vines. Radioprotection Colloques (2002). 37 C1: 515–520.
Brambilla M., Strebl F., Carini F., Gerzabek M. Ventomod: a dynamic model for leaf to fruit transfer of radionuclides in processing tomato plants (Lycopersicon esculentum Mill.) following a direct contamination event. JER (2003) 65(3): 309–328.
Carini, F. and Bengtsson G. Post-deposition transport of radionuclides in fruit. JER (2001) 52 (2–3): 215–236.
Koranda, J. J. and Robison W. L. Accumulation of radionuclides by plants as a monitor system. Environmental Health Perspectives (1978). 27: 165–179.
Ould-Dada Z., Carini F., Eged K., Kis Z., Linkov I., Mitchell N.G., Mourlon C., Venter A. Radionuclides in fruit systems: Model prediction-experimental data intercomparison study. Science of The Total Environment (2006) 366 (2–3): 514–524.
Ould-Dada Z., Carini F., Mitchell N.G. A model testing study for the transfer of radioactivity to fruit. JER (2003) 70(3): 207–221.
Cataldo D. A., Garland T. R., Wildung R. E., Thomas J.M.. Foliar absorption of transuranic elements: Influence of physicochemical form and environmental factors. JEQ (1980) 9(3): 364–369.
Kashparov V., Colle C., Zvarich S., Yoschenko V., Levchuk S., Lundin S. Soil-to-plant halogens transfer studies 2. Root uptake of radiochlorine by plants. JER (2005) 79(3): 233–253.
Wan H.F., Mikkelsen R.L., Page A.L. Selenium uptake by some agricultural crops from central California soils. JEQ, (1988)~17(2):~269–272.~