Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-14T00:21:26.127Z Has data issue: false hasContentIssue false

Nouvelle méthode de surveillance des travailleuses du nucléaire par anthroporadiamétrie : utilisation des calculs Monte Carlo associés aux fantômes déformables de type Mesh et NURBS

Published online by Cambridge University Press:  19 May 2011

J. Farah
Affiliation:
IRSN-DRPH, Laboratoire d’évaluation de la dose interne, BP 17, 92269 Fontenay-aux-Roses, France
D. Broggio
Affiliation:
IRSN-DRPH, Laboratoire d’évaluation de la dose interne, BP 17, 92269 Fontenay-aux-Roses, France
D. Franck
Affiliation:
IRSN-DRPH, Laboratoire d’évaluation de la dose interne, BP 17, 92269 Fontenay-aux-Roses, France
Get access

Abstract

Les mesures spectrométriques par anthroporadiamétrie, utilisées pour la surveillance des travailleurs exposés à des risques de contamination interne, permettent une estimation rapide et fiable de la nature des radionucléides incorporés ainsi que de leur activité. Les étalonnages typiques des systèmes de comptage dédiés aux mesures in vivo reposent sur l’utilisation de fantômes physiques d’un réalisme anatomique limité. Ce travail met en évidence l’intérêt des nouvelles technologies de l’infographie, en proposant de nouvelles représentations 3D graphiques afin d’optimiser la dosimétrie interne et de la surveillance des travailleuses du nucléaire par anthroporadiamétrie. Une librairie de modèles thoraciques féminins aux formats Mesh et NURBS (non uniform rational B-splines) a ainsi été développée et a permis la correction des coefficients d’étalonnages expérimentalement obtenus à l’aide du mannequin masculin Livermore. La variation de l’efficacité de comptage avec la morphologie du fantôme a ensuite été mise en équation. Cette équation permet d’éviter la création laborieuse d’un fantôme équivalent travailleuse et de s’affranchir des simulations Monte Carlo très coûteuses en temps. Après validation à l’aide de données simulées, cette équation a été utilisée pour déduire, à partir des mesures expérimentales Livermore, les efficacités de comptage pour toute travailleuse surveillée par anthroporadiamétrie

Type
Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., et al. (2003) Geant4: a Simulation Toolkit., Nucl. Instrum. Methods A 506 (3), 250-303. Google Scholar
Aubineau-Laniece, I., de Carlan, L., Clairand, I., Lemosquet, A., Chiavassa, S., Pierrat, N., Bardies, M., Franck, D. (2005) Current developments at IRSN on computational tools dedicated to assessing doses for both internal and external exposure, Radiat. Prot. Dosim. 115 (1-4), 522-529. Google ScholarPubMed
Berger, C.D., Lane, B.H. (1985) Biometric estimate of chest wall thickness of females Health Phys. 49, 419424. Google ScholarPubMed
Berger M.J., Hubbell J.H., Seltzer S.M., Chang J., Coursey J.S., Sukumar R., Zucker D.S. (2005) XCOM: Photon Cross Section Database National Institute of Standards and Technology (http://physics.nist.gov/xcom).
Brown, T.P., Ringrose, C., Hyland, R.E., Cole, A.A., Brotherston, T.M. (1999). A method of assessing female breast morphometry and its clinical application, Br. Jr. Plast. Surg. 52, 355359. Google ScholarPubMed
Clairand, I., Bouchet, L.G., Ricard, M., Durigon, M., Di Paola, M., Aubert, B. (2000) Improvement of internal dose calculations using mathematical models of different adult heights, Phys. Med. Biol. 45 (10), 2771-2785. Google ScholarPubMed
Comité Européen de Normalisation (2004) Désignation des tailles de vêtements : partie 3 : Mesures et intervalles, EN 13402-3.
Fabié, A., Delay, E., Chavoin, J.P., Soulhiard, F., Seguin, P. (2006) Plastic surgery application in artistic studies of breast cosmetic, Ann. Chir. Plast. Esthet. 51, 142-150. Google ScholarPubMed
Farah, J., Broggio, D., Franck, D. (2010a) Creation and use of adjustable phantoms: application for the lung monitoring of nuclear workers, Health Phys. 99 (5), 649-661. Google Scholar
Farah J., Broggio D., Franck D. (2010b) Examples of Mesh and NURBS modeling for in vivo lung counting studies, Radiat. Prot. Dosim., doi: 10.1093/rpd/ncq313. CrossRef
Farah, J., Broggio, D., Franck, D. (2010c) Female workers and in vivo lung monitoring: a simple model for morphological dependency of counting efficiency curves, Phys. Med. Biol. 55, 7377-7395. Google Scholar
Farah J., Henriet J., Broggio D., Laurent R., Fontaine E., Chebel-Morello B., Sauget M., Salomon M., Makovicka L., Franck D. (2010d) Development of a new CBR-Based platform for human contamination emergency situations, Radiat. Prot. Dosim., doi:10.1093/rpd/ncq440. CrossRef
Franck, D., Borissov, N., de Carlan, L., Pierrat, N., Genicot, J.L., Etherington, G. (2003), Application of Monte Carlo calculations to calibration of anthropomorphic phantoms used for activity assessment of actinides in lungs, Radiat. Prot. Dosim. 105 (1-4), 403-408. Google ScholarPubMed
Franck, D., de Carlan, L., Pierrat, N., Broggio, D., Lamart, S. (2007) OEDIPE: a new graphical user interface for fast construction of numerical phantoms and MCNP calculations, Radiat. Prot. Dosim. 127 (1–4), 262265. Google ScholarPubMed
Griffith R.V., Dean P.N., Anderson A.L., Fisher J.C. (1978) Fabrication of a tissue-equivalent torso phantom for intercalibration of in-vivo transuranic-nuclide counting facilities, Symp. Adv. Radiat. Prot. Monit. (Stockholm, Sweden).
Henriet, J., Farah, J., Chebel-Morello, B., Bopp, M., Broggio, D., Makovicka, L. (2010) Feasibility study of a new platform based on the Case-Based Reasoning principles to efficiently search and store voxel phantoms, Radioprotection 45 (1), 67-82. Google Scholar
ICRP Publication 110 (2009) Adult Reference Computational Phantoms, Ann. ICRP 39 (2).
ICRU Report 44 (1989) Tissues Substitues in Radiation Dosimetry and Measurements.
Kovtun, A.N., Firsanov, V.B., Fominykh, V.I. andIsaakyan, G.A. (2000) Metrological parameters of the unified calibration whole-body phantom with gamma-emitting radionuclides, Radiat. Prot. Dosim. 89 (3-4), 239-242. Google Scholar
Kramer R., Zankl M., Williams G., Dexter G. (1982) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part I: the male (Adam) and female (Eva) adult mathematical phantoms, Report GSF-Bericht S-885, München, GSF.
Kramer, R., Vieira, J.W., Khoury, H.J., Lima, F.R.A., Fülle, D. (2003) All About MAX: A Male Adult VoXel phantom for Monte Carlo Calculations in Radiation Protection Dosimetry, Phys. Med. Biol. 48 (9), 1239-1269. Google ScholarPubMed
de La Grandmaison, G.L., Clairand, I., Durigon, M. (2001) Organ Weight in 684 adult autopsies: new tables for a caucasoid population, For. Sci. Int. 119, 149-154. Google ScholarPubMed
Makovicka, L., Vasseur, A., Sauget, M., Martin, E., Gschwind, R., Henriet, J., Salomon, M. (2009) Avenir des nouveaux concepts des calculs dosimétriques basés sur les méthodes de Monte Carlo, Radioprotection, 44 (1), 77-88. Google Scholar
Min P. (2004), Binvox 3D Mesh voxelizer. http://www.cs.princeton.edu/~min/binvox/.
Newton D., Wells A.C., Mizushita S., Toohey R.E., Sha J.Y., Jones R., Jefferies S.J., Palmer H.E., Rieksts G.A., Anderson A.L., Campbell G.W. (1985). The Livermore phantom as a calibration standard in the assessment of plutonium in lungs. Proceedings of a Symposium, Assessment of Radioactive Contamination in Man, Paris, 19–23 november 1984, organized by IAEA in cooperation with WHO.
Nooruddin, F., Turk, G. (2003) Simplification and Repair of Polygonal Models Using Volumetric Techniques, IEEE Trans. Vis. Comput. Graphics 9, 191-205. Google Scholar
Pechter E.A. (1998) A new method for determining bra size and predicting postaugmentation breast size, Plast. Reconstr. Surg. 102 (4).
Pelowitz D.B. (2008), MCNPX User’s manual version 2.6.0, Los Alamos National Laboratory, Report LA-CP-07-1473.
Petoussi-Henss, N., Zankl, M. (1998) Voxel anthropomorphic models as a tool for internal dosimetry, Radiat. Prot. Dosim. 79, 415-418. Google Scholar
Regnault, P., Baker, T.J., Gleason, M.C., Gordon, H.L., Grossman, A.R., Lewis, J.R., Waters, W.R., Williams, J.E. (1972) Clinical trial and evaluation of a proposed new inflatable mammary prosthesis, Plast. Reconst. Surg. 50, 220. Google ScholarPubMed
Salvat F., Fernandez-Varea J.M., Acosta E., Sempau J. (2001) PENELOPE, a Code System for Monte Carlo Simulation of Electron and Photon Transport, NEA/NSC/DOC(2001)19, ISBN:92-64-18475-9.
Segars W.P. (2001), PhD thesis, University of North Carolina at Chapel Hill.
Segars, W.P., Tsui, B. (2007) 4D MOBY and NCAT phantoms for medical imaging simulation of mice and men, J. Nucl. Med. Meet. Abst. 48 (2), 203P. Google Scholar
Sigurdson L.J., Kirkland S.A. (2006). Breast volume determination in breast hypertrophy: an accurate method using two anthropomorphic measurements, Plast. Reconst. Surg. 118 (2). CrossRef
Smith D.J., Palin W.E., Katch V.L., Bennett J.E. (1986) Breast volume and anthropomorphic measurements: Normal Values, Plast. Reconstr. Surg. 78 (3).
Turner, A.J., Dujon, D.G. (2005) Predicting cup size after reduction mammaplasty, Br. Jr. Plast. Surg. 58, 290-298. Google ScholarPubMed
Vandeput, J.J., Nelissen, M. (2002) Considerations on Anthropometric Measurements of the Female Breast, Aesth. Plast. Surg. 26, 348-355. Google ScholarPubMed
Warren, R., Thompson, D., del Farte, C., Cordell, M., Highnam, R., Tromans, C., Warsi, I., Ding, J., Sala, E., Estrella, F., Solomindes, A.E., Odeh, M., McClatchey, R., Bazzocchi, M., Amendolia, S.R., Brady, M. (2007) A comparison of some anthropometric parameters between an italian and a UK population: “proof of principle” of a European project using MammoGrid, Clin. Rad. 62, 1052-1060. Google Scholar
Wood K., Cameron M., Fitzgerald K. (2008) Breast size, bra fit and thoracic pain in young women: a correlation study, Chiropr. Osteopat. 16 (1).
Xu, X.G., Taranenko, V., Zhang, J., Shi, C. (2007) A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods - RPI-P3, -P6 and -P9, Phys. Med. Biol. 52 (23), 7023-7044. Google ScholarPubMed
Zaidi, H., Xu, X.G. (2007). Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modelling in radiological sciences, Annu. Rev. Biomed. Eng. 9, 471-500. Google Scholar
Zankl, M., Wittmann, A. (2001) The adult male voxel model ‘Golem’ segmented from whole-body CT patient data, Radiat. Environ. Biophys. 40, 153-162. Google ScholarPubMed
Zankl, M., Petoussi-Henss, N., Fill, U., Regulla, D. (2003) The application of voxel phantoms to the internal dosimetry of radionuclides, Radiat. Prot. Dosim. 105, 539-547. Google ScholarPubMed
Zubal, I.G., Harrell, C.R., Smith, E.O., Rattner, Z., Gindi, G., Hoffer, P.B. (1994) Computerized three dimensional segmented human anatomy, Med. Phys. 21 (2), 299-302. Google ScholarPubMed