Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T21:40:34.878Z Has data issue: false hasContentIssue false

Metallothionein and glutathione in Lymnaea stagnalis determine the specificity of responses to the effects of ionising radiation

Published online by Cambridge University Press:  04 July 2012

L. Gnatyshyna
Affiliation:
Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine. E-mail: Oksana.Stolyar@gmail.com
H. Falfushynska
Affiliation:
Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine. E-mail: Oksana.Stolyar@gmail.com
O. Bodilovska
Affiliation:
Research Laboratory of General and Experimental Biology, International Sakharov Environmental University, Dolgobrodskaya Str., 23, Minsk, 220009, Republic of Belarus; E-mail: algiv@rambler.ru
O. Oleynik
Affiliation:
Research Laboratory of General and Experimental Biology, International Sakharov Environmental University, Dolgobrodskaya Str., 23, Minsk, 220009, Republic of Belarus; E-mail: algiv@rambler.ru
A. Golubev
Affiliation:
Research Laboratory of General and Experimental Biology, International Sakharov Environmental University, Dolgobrodskaya Str., 23, Minsk, 220009, Republic of Belarus; E-mail: algiv@rambler.ru
O. Stoliar
Affiliation:
Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine. E-mail: Oksana.Stolyar@gmail.com
Get access

Abstract

The aim of our study was to distinguish the stress-related molecular response of the pulmonate mollusc Lymnaea stagnalis from the Chernobyl area in comparison with the consequences of other harmful effects, including the short-term effects of radiation and heating. Specimens inhabiting ponds near the Chernobyl nuclear power plant, the cooling channel of the electric power station and the soil-reclamation channel (groups R, T and C, correspondingly), and specimens adapted to laboratory conditions (a control group (CL), a disposable group exposed to 2 mGy X-ray radiation over the body (RL), and a group exposed to 25 °C for 4 days (TL)) were compared. Despite high variability of responses, Principle Component Analysis distinctly separated the laboratory and feral groups into two sets. In the feral groups, low levels of the stress-related and metal-binding protein metallothionein (MT), protein carbonyls and lactate dehydrogenase in the digestive gland were indicated. The main separating criteria selected by classification and regression tree analysis were the protein carbonyls, cholinesterase and MT. Molluscs from group R were clearly distinguished by the lowest levels of MT, Mn-superoxide dismutase and lactate dehydrogenase, and the highest level of glutathione, demonstrating that the oppression of the gene-determined stress-related response and its partially metabolic compensation can be possible markers for chronic environmental effects of irradiation.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlard, B.P.F., Dobbing, J. (1972) Permanent changes in the activity and subcellular distribution of acetylcholinesterase and lactate dehydrogenase in adult rat cerebellum after X-irradiation in infancy, Exp. Neurol. 35(3), 547550.Google ScholarPubMed
Aebi H. (1974) Catalase. In: Bergmeyer HU (Ed.) Methods of Enzymatic Analysis. Academic Press, London, 671–684.
Anderson, M.E. (1985) Determination of glutathione and glutathione disulfide in biological samples, Methods Enzymol. 113, 548-555.Google ScholarPubMed
Anestis, A., Lazou, A., Portner, H.O., Michaelidis, B. (2007) Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature, Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, 911-921.Google ScholarPubMed
Beauchamp, C., Fridovich, I. (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gels, Anal. Biochem. 44, 276-287.Google Scholar
Bergmeyer H.U., Bernt E. (1974) Lactate dehydrogenase U.V. assay with pyruvate and NADH, In: Bergemeyer HU (Eds.) Method of Enzymatic Analysis, Academic Press, New York. II, 574–579.
Bolton-Warberg, M., Coen, L.D., Weinstein, J.E. (2007) Acute Toxicity and Acetylcholinesterase Inhibition in Grass Shrimp (Palaemonetes pugio) and Oysters (Crassostrea virginica) Exposed to the Organophosphate Dichlorvos: Laboratory and Field Studies, Arch. Environ. Contam. Toxicol. 52, 207-216.Google Scholar
Bugge, J., Weber, R.E. (1999) Oxygen binding and its allosteric control in hemoglobin of the pulmonate snail, Biomphalaria glabrata, Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, 1-19.Google ScholarPubMed
Cai, L., Satoh, M., Tohyama, Ch., Cherian, M.G. (1999) Metallothionein in radiation exposure: its induction and protective role, Toxicology 132, 85-98.Google ScholarPubMed
Corsi, I., Pastore, A.M., Lodde, A., Palmerini, E., Castagnolo, L., Focardi, S. (2007) Potential role of cholinesterases in the invasive capacity of the freshwater bivalve, Anodonta woodiana (Bivalvia: Unionacea): a comparative study with the indigenous species of the genus, Anodonta sp., Comp. Biochem. Physiol. 145 C, 413-419.Google Scholar
Croteau, M.N., Luoma, S.N. (2007) Characterizing dissolved Cu and Cd uptake in terms of the biotic ligand and biodynamics using enriched stable isotopes, Environ. Sci. Technol. 41, 3140-3145.Google Scholar
Ellman, G.L., Courtney, K.D., Andres, V.J., Featherstone, R.M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7, 88-95.Google ScholarPubMed
Falfushynska, H.I., Gnatyshyna, L.L., Farkas, A., Vehovszky, A., Gyori, J., Stoliar, O.B. (2010) Vulnerability of biomarkers in the indigenous mollusk Anodonta cygnea to spontaneous pollution in a transition country, Chemosphere 81, 1342-1351.Google Scholar
Farcy, E., Voiseux, C., Lebel, J.-M., Fievet, B. (2007) Seasonal changes in mRNA encoding for cell stress markers in the oyster Crassostrea gigas exposed to radioactive discharges in their natural environment, Sci. Total Environ. 374, 328-341.Google Scholar
Fetisov, A.N., Rubanovich, A.V., Slipchenko, T.S., Shevchenko, V.A. (1992) The structure of Dreissena polymorpha populations from basins adjacent to the Chernobyl atomic power station, Sci. Total Environ. 112, 115-124.Google ScholarPubMed
Frantsevich, L., Korniushin, A., Pankov, I., Ermakov, A., Zakharchuk, T. (1996) Application of molluscs for radioecological monitoring of the Chernobyl outburst, Environ. Pollut. 94, 91-100.Google ScholarPubMed
Gagnaire, B., Geffard, O., Xuereb, B., Margoum, Ch., Garric, J. (2008) Cholinesterase activities as potential biomarkers: characterization in two freshwater snails, Potamopyrgus antipodarum (Mollusca, Hydrobiidae, Smith 1889) and Valvata piscinalis (Mollusca, Valvatidae, Müller 1774), Chemosphere 71(3), 553-560.Google Scholar
Gnatyshyna, L.L., Falfushynska, H.I., Golubev, A.P., Dallinger, R., Stoliar, O.B. (2011) The roles of metallothioneins in adaptation of pulmonate mollusk Lymnaea stagnalis under condition of environmental pollution, Hydrobiol. J. 47(5), 56-66. Google Scholar
Godoy, J.M., de Oliveira, M.S., de Almeida, C.E.B., de Carvalho, Z.L., da Silva, E.R., da CostaFernandes, F., Pitanga, F.L., Danelon, O.M. (2008) 210Po concentration in Perna perna mussels: looking for radiation effects, J. Environ. Radioactivity 99, 631-640.Google ScholarPubMed
Golubev, A.P. (1995) General thermoresistance and radioresistance of the populations of Lymnaea stagnalis (Gastropoda, Pulmonata) from the reservoirs with different forms of anthropogenic loading, Doklady Akademii Nauk 342(2), 280-283.Google Scholar
Golubev, A., Afonin, V., Maksimova, S., Androsov, V. (2005) The current state of pond snail Lymnaea stagnalis populations from water reservoirs of the Chernobyl nuclear accinent zone, Radioprotection 240, 511-517.Google Scholar
Griffith, O.W. (1980) Determination of Glutathione and Glutathione Disulfide Using Glutathione Reductase and 2-Vinylpyridine, Anal. Biochem. 106, 207-212.Google ScholarPubMed
Guerlet, E., Ledy, K., Meyer, A., Giambérini, L. (2007) Towards a validation of a cellular biomarker suite in native and transplanted zebra mussels: a 2-year integrative field study of seasonal and pollution-induced variations, Aquat. Toxicol. 81(4), 377-388.Google Scholar
Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974) Glutathione S-Transferases: The first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249, 7130-7139.Google ScholarPubMed
Howell, E.K., Gaschak, S.P., Griffith, K.D.W., Rodgers, B.E. (2011) The effects of environmental low-dose irradiation on tolerance to chemotherapeutic agents, Environ. Toxicol. Chem. 30, 640-649.Google ScholarPubMed
Ivanenko, G., Goloshchapov, A., Fatkullina, L., Burlakova, E. (2008) Relationship Between Plasma Glutathione Levels and Lipid Antioxidants of People Exposed to Low Doses of Radi, Radioprotection 43(5), 54. Google Scholar
Ivanina, A.V., Sokolova, I.M., Sukhotin, A.A. (2008) Oxidative stress and expression of chaperones in aging molluscs, Comp. Biochem. Physiol. 150 B, 53-61.Google Scholar
Lingenfelser, S.K., Dallas, C.E., Jagoe, C.H., Chesser, R.K., Smith, M.H., Lomaki, M.D. (1997) Variation in blood cell DNA in Carassius carassius from ponds near Chernobyl, Ukraine, Ecotoxicology 6, 187-203.Google Scholar
Lushchak, V.I., Bagnyukova, T.V. (2006) Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes, Comp. Bioch. Physiol. 143 C, 36-41.Google Scholar
Masola, B., Chibi, M., Kandare, E., Naik, Y.S., Zaranyika, M.F. (2008) Potential marker enzymes and metal-metal interactions in Helisoma duryi and Lymnaea natalensis exposed to cadmium Ecotoxicol. Environ. Saf. 70, 79-87.Google ScholarPubMed
Ohkawa, H., Onishi, N., Yagi, K. (1979) Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction, Anal. Biochem. 95, 351-358.Google Scholar
Olsvik, P.A., Heier, L.S., Rosseland, B.O., Teien, H.C., Salbu, B. (2010) Effects of combined gamma-irradiation and metal (Al+Cd) exposures in Atlantic salmon (Salmo salar L.), J. Environ. Radioactivity 101, 230-236.Google Scholar
Reznick, A.Z., Packer, L. (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay, Methods Enzymol. 233, 357-363.Google Scholar
Russo, J., Lefeuvre-Orfila, L., Lagadic, L. (2007) Hemocyte-specific responses to the peroxidizing herbicide fomesafen in the pond snail Lymnaea stagnalis (Gastropoda, Pulmonata), Environ. Pollut. 146, 420-427.Google Scholar
Sidorov, V., Maslova, G.T. (2008) Antioxidant defense in the central nervous system of Lymnaea stagnalis at different environmental temperatures, News Biomed. Sci. 1-2, 74-78. Google Scholar
Stebbing, A.R.D. (1982) Hormesis- the stimulation of growth by low levels of inhibitors, Sci. Total Environ. 22, 213-234.Google ScholarPubMed
Szeinfeld, D, de Villiers, N. (1993) Cholinesterase response in the rhabdomyosarcoma tumor and small intestine of the BALB/c mice and the radioprotective actions of exogenous ATP after lethal dose of neutron radiation, Strahlenther Onkol. 169(5), 311-316.Google Scholar
Ulsh, B., Hinton, T.G., Congdon, J.D., Dugan, L.C., Whicker, F.W., Bedford, J.S. (2003) Environmental biodosimetry: A biological relevant tool for ecological risk assessment and biomonitoring, J. Environ. Radioactivity 66, 121-139.Google Scholar
Viarengo, A., Lowe, D., Bolognesi, C., Fabbri, E., Koehler, A. (2007) The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp. Biochem. Physiol. 146 C, 281-300.Google Scholar
Viarengo, A., Ponzano, E., Dondero, F., Fabbri, R. (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic Molluscs, Mar. Environ. Res. 44, 69-84.Google Scholar
Williams, M.W., Baker, R.D., Covill, R.W. (1961) Effect of Gamma Irradiation and AET on Rat Blood Cholinesterase, Exp. Biol. Med. 106(3), 603605.Google ScholarPubMed