Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T06:46:17.076Z Has data issue: false hasContentIssue false

An experimental study of detection limits and corresponding doses of IRSN in vivo monitoring vehicles in the case of post-accident scenarios

Published online by Cambridge University Press:  26 September 2014

D. Broggio*
Affiliation:
IRSN/PRP-HOM/SDI/LEDI, BP 17, 92262 Fontenay-aux-Roses, France.
É. Navarro
Affiliation:
IRSN/PRP-CRI/SESUC/BSPA, BP 17, 92262 Fontenay-aux-Roses, France.
D. Viltard
Affiliation:
IRSN/PRP-HOM/SDI/LEDI, BP 17, 92262 Fontenay-aux-Roses, France.
C. Challeton-de Vathaire
Affiliation:
IRSN/PRP-HOM/SDI/LEDI, BP 17, 92262 Fontenay-aux-Roses, France.
R. Bô
Affiliation:
IRSN/PRP-HOM/SDI/LEDI, BP 17, 92262 Fontenay-aux-Roses, France.
L. Debrose
Affiliation:
IRSN/PRP-HOM/SDI/LEDI, BP 17, 92262 Fontenay-aux-Roses, France.
X. Moya
Affiliation:
IRSN/PRP-HOM/SDI/LEDI, BP 17, 92262 Fontenay-aux-Roses, France.
D. Franck
Affiliation:
IRSN/PRP-HOM/SDI/LEDI, BP 17, 92262 Fontenay-aux-Roses, France.
Get access

Abstract

The measurement performances of in vivo monitoring vehicles were studied considering an increase in the radiological background in areas where the population is not evacuated after a nuclear accident. The study focused on 137Cs and 131I Detection Limits (DLs) and corresponding doses, for adults and one-year-old children. These DLs for ground contamination were obtained experimentally using a grid of point sources. Then, the DLs and doses were calculated using the experimental data and a safety factor for two accident scenarios. For these scenarios the 137Cs DL corresponds to a committed effective dose of 0.02 mSv. The 131I DL corresponds to committed equivalent thyroid doses of 3 mSv (adult) and 30 mSv (one-year-old child). To guarantee a 45 mSv thyroid equivalent dose assessment for the child the surface activity of 131I + 132I + 133I should be below 1.6 MBq/m2. This study shows that the vehicles can operate in a contaminated area where the population is not evacuated. However, in such a case, the contamination level outside and inside the vehicle should be kept stable to guarantee efficient body counting.

Type
Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ASN (2012) Éléments de doctrine pour la gestion post-accidentelle d’un accident nucléaire – Version finale du 5 octobre 2012. Comité Directeur pour la gestion de la phase post-accidentelle d’un accident nucléaire (CODIRPA). http://www.asn.fr/index.php/Bas-de-page/Sujet-Connexes/Gestionpost-accidentelle/Comite-directeur-gestion-de-phase-post-accidentelle/Elements-de-doctrinepour-la-gestion-post-accidentelle-d-un-accident-nucleaire-5-octobre-2012.
Boddy, K. (1967) A high sensitivity shadow-shield whole body monitor with scanning-bed and tilting chair geometries, incorporated in a mobile laboratory, Br. J. Radiol. 40 (476), 631-637. Google Scholar
Bondarkov, M.D., Maksimenko, A.M., Gaschak, S.P., Zheltonozhsky, V.A., Jannik, G.T., Farfán, E.B. (2001) Method for simultaneous 90Sr and 137Cs in vivo measurements of small animals and other environmental media developed for the conditions of the Chernobyl Exclusion Zone, Health Phys. 101 (4), 383-392. Google ScholarPubMed
Broggio, D. et al. (2012) Monte Carlo modelling for the in vivo lung monitoring of enriched uranium: Results of an international comparison, Radiat. Meas. 47 (7), 492-500. Google Scholar
Castagnet, X., Amabile, J.C., Cazoulat, A., Lecompte, Y., de Carbonnières, H., Laroche, P. (2007) Diagnosis of internal radionuclide contamination by mobile laboratories, Radiat. Prot. Dosim. 125 (1-4), 469-471. Google ScholarPubMed
Dantas, B.M., Lucena, E.A., Dantas, A.L.A., Santos, M.S., Julião, L.Q.C., Melo, D.R., Sousa, W.O., Fernandes, P.C., Mesquita, S.A. (2010) A mobile bioassay laboratory for the assessment of internal doses based on in vivo and in vitro measurements, Health Phys. 99 (4), 449-452. Google ScholarPubMed
Eckerman K.F., Leggett R.W., Cristy M., Nelson C.B., Ryman J.C., Sjoreen A.L., Ward R.C. (2001) DCAL: User’s Guide to the DCAL System. Oak Ridge National Laboratory Report, ORNL/TM-2001/190.
Franck D., Broggio D., Challeton-de Vathaire C., Moya X., Parre F., Viltard D., Agarande M. (2012) Development of a fleet of intervention mobile unit for radiological accident monitoring of internal contamination. In: Proceedings of IRPA13, May 2012, Glasgow (full paper TS2b.5, available at http://www.irpa13glasgow.com/information/downloads/).
GTN5 (1989) Détermination du seuil et de la limite de détection en spectrométrie gamma. Rapport du Groupe de travail de normalisation No. 5 du Comité d’instrumentation et de radioprotection, CEA-R-5506.
Hille, R., Hill, P., Heinemann, K., Ramzaev, V., Barkovski, A., Konoplia, V., Neth, R. (2000) Current development of the human and environmental contamination in the Bryansk-Gomel Spot after the Chernobyl accident, Radiat. Environ. Biophys. 39 (2), 99-109. Google ScholarPubMed
ICRP Publication 56 (1990) Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 1, Ann. ICRP 20 (2).
ICRP Publication 67 (1993) Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 2 Ingestion Dose Coefficients, Ann. ICRP 23 (3-4).
ICRP Publication 68 (1994) Dose Coefficients for Intakes of Radionuclides by Workers, Ann. ICRP 24 (4).
ICRP Publication 78 (1997) Individual monitoring for internal exposure of workers, Ann. ICRP 27 (3-4).
ICRU Report 48 (1992) Phantoms and Computational Models in Therapy. Diagnosis and Protection, Bethesda, MD, ICRU.
Kovtun, A.N., Firsanov, V.B., Fominykh, V.I., Isaakyan, G.A. (2000) Metrological Parameters of the Unified Caibration Whole Body Phantom with Gamma-emiting Radionuclides, Radiat. Prot. Dosim. 89, 239-242. Google Scholar
Lamart, S., Blanchardon, E., Molokanov, A., Kramer, G.H., Broggio, D., Franck, D. (2009) Study of the influence of radionuclide biokinetics on the efficiency of in vivo counting using Monte Carlo simulation, Health Phys. 96 (5), 558-567. Google ScholarPubMed
Lopez, M.A., Broggio, D., Capello, K., Cardenas-Mendez, E., El-Faramawy, N., Franck, D., James, A.C., Kramer, G.H., Lacerenza, G., Lynch, T.P., Navarro, J.F., Navarro, T., Perez, B., Rühm, W., Tolmachev, S.Y., Weitzenegger, E. (2011) EURADOS intercomparison on measurements and Monte Carlo modelling for the assessment of Americium in a USTUR leg phantom, Radiat. Prot. Dosim. 144 (1-4), 295-299. Google Scholar
Pellerin P., Moroni J.-P. (1969) Le laboratoire mobile de spectrométrie humaine du SCPRI. In: Handling of radiation accidents, Proceedings of a symposium, 19-23 May 1969, Vienna (IAEA, Eds.), pp. 317-325.
Ramzaev, V., Yonehara, H., Hille, R., Barkovsky, A., Mishine, A., Sahoo, S.K., Kurotaki, K., Uchiyama, M. (2006) Gamma-dose rates from terrestrial and Chernobyl radionuclides inside and outside settlements in the Bryansk Region, Russia in 1996–2003, J. Environ. Radioact. 85 (2-3), 205-227. Google ScholarPubMed
Straume, T., Anspaugh, L.R., Marchetti, A.A., Voigt, G., Minenko, V., Gu, F., Men, P., Trofimik, S., Tretyakevich, S., Drozdovitch, V., Shagalova, E., Zhukova, O., Germenchuk, M., Berlovich, S. (2006) Measurement of 129I and 137Cs in soils from Belarus and reconstruction of 131I deposition from the Chernobyl accident, Health Phys. 91 (1), 7-19. Google Scholar
Talerko, N. (2005) Reconstruction of 131I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modelling, J. Environ. Radioact. 84 (3), 343-362. Google Scholar
Terada, H., Katata, G., Chino, M., Nagai, H. (2012) Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: Verification of the source term and analysis of regional-scale atmospheric dispersion, J. Environ. Radioact. 112, 141-154. Google ScholarPubMed