Hostname: page-component-788cddb947-55tpx Total loading time: 0 Render date: 2024-10-16T05:33:11.579Z Has data issue: false hasContentIssue false

Risk assessment for potential radiation-induced cancer after lung and bone marrow exposure during interventional cardiology procedures

Published online by Cambridge University Press:  01 November 2012

S. Jacob
Affiliation:
Institut de radioprotection et de sûreté nucléaire, PRP-HOM, SRBE, Laboratory of Epidemiology, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France
O. Bar
Affiliation:
Clinique Saint Gatien, 8 place de la Cathédrale, 37000 Tours, France
O. Catelinois
Affiliation:
Institut de Veille Sanitaire, 12 rue du Val d'Osne, 94410 Saint-Maurice, France
C. Maccia
Affiliation:
Centre d’Assurance de qualité des Applications Technologiques dans le domaine de la Santé, 43 boulevard Maréchal Joffre, 92340 Bourg-La-Reine, France
D. Laurier
Affiliation:
Institut de radioprotection et de sûreté nucléaire, PRP-HOM, SRBE, Laboratory of Epidemiology, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France
M.-O. Bernier
Affiliation:
Institut de radioprotection et de sûreté nucléaire, PRP-HOM, SRBE, Laboratory of Epidemiology, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France
Get access

Abstract

Interventional cardiology procedures (ICPs), while providing important benefits to patients, also contribute to their radiation exposure, in particular for the organs surrounding the heart. This paper addresses the issue of radiation exposure to the lung and bone marrow related to coronary interventions in terms of organ doses for coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA), and risk assessment of potential radiation-induced cancer. Dosimetric information on 2095 ICPs from French patients was collected. The median lung dose for CA alone was 34 mGy for men and 22 mGy for women and the median bone marrow dose was 8 mGy and 4 mGy, respectively; doses were slightly higher for CA and ad hoc PTCA and nearly twice as high for CA and elective PTCA. Based on the French national mortality registry and Biological Effects of Ionising Radiation VII models, spontaneous and radiation-induced lung cancers and leukaemia were estimated. For men and women aged at least 60 years old at the first ICP, excess risk of potentially fatal cancers attributable to radiation ranged from 0.4% to 4%. This study provides evidence of the potential risk of radiation-induced cancer after an ICP. The limitations of such calculations are due to the difficulty of taking into account patients’ possibly shorter life expectancy than in the general population, linked to their comorbidities and coronary disease. Nevertheless, risk estimates can be used to illustrate the beneficial role of optimisation of doses delivered to the patient.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar, O., Maccia, C., Pages, P., Blanchard, D. (2008) A multicentre survey of patient exposure to ionising radiation during interventional cardiology procedures in France, EuroIntervention. 3, 593-599.Google ScholarPubMed
Bernier, M., Jacob, S., Maccia, C., Bar, O., Catelinois, O., Blanchard, D., Laurier, D. (2012) Patient cumulative radiation exposure in interventional cardiology, Radioprotection 47, 93-103.Google Scholar
Berrington de Gonzalez, A., Darby, S. (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries, Lancet 363, 345-351.Google ScholarPubMed
Blanchard, D. (2007) Progress in interventional cardiology and stents in France and Europe, Ann. Cardiol. Angéiol. 56, S42-S47.Google Scholar
Chambers, R.J., Fetterly, K., Holzer, R., Lin, P.J.P., Blankenship, J.C., Balter, S., Laskey, W. (2011) Radiation safety program for cardiac catheterization laboratory, Cath. Card. Interv. 77, 510-514.Google ScholarPubMed
Delichas, M.G., Psarrakos, K., Molyvda-Athanassopoulou, E., Giannoglou, G., Hatziioannou, K., Papanastassiou, E. (2003) Radiation doses to patients undergoing coronary angiography and percutaneous transluminal coronary angioplasty, Radiat. Prot. Dosim. 103, 149-154.Google ScholarPubMed
Efstathopoulos, E.P., Karvouni, E., Kottou, S., Tzanalaridou, E., Korovesis, S., Giazitzoglou, E., Katritsis, D.G. (2004) Patient dosimetry during coronary interventions: a comprehensive analysis, Am. Heart J. 147, 468-475.Google ScholarPubMed
EURATOM (1997) Council Directive 97/43, On health protection of individuals against the dangers of ionising radiation in relation to medical exposure, L180/22.
Hall, E.J., Brenner, D.J. (2008) Cancer risks from diagnostic radiology, The British journal of radiology. 81, 362-378.Google ScholarPubMed
Harrison, D., Ricciardello, M., Collins, L. (1998) Evaluation of radiation dose and risk to the patient from coronary angiography, Aust. N. Z. J. Med. 28, 597-603.Google ScholarPubMed
InVS and INSERM (2003) Evolution de l’incidence et de la mortalité par cancer en France de 1978 à 2000, Réseau français des registres du cancer.
Lambe, M., Hall, P., Granath, F., Sadr Azodi, O., Nillsson, T. (2005) Coronary angioplasty and cancer risk: a population-based cohort study in Sweden, Cardiovasc. Intervent. Radiol. 28, 36-38.Google ScholarPubMed
Lickfett, L., Mahesh, M., Vasamreddy, C., Bradley, D., Jayam, V., Eldadah, Z., Dickfeld, T., Kearney, D., Dalal, D., Luderitz, B., Berger, R., Calkins, H. (2004) Radiation exposure during catheter ablation of atrial fibrillation, Circulation 110, 3003-3010.Google ScholarPubMed
Malisan, M.R., Padovani, R., Faulkner, K., Malone, J.F., Vano, E., Jankowski, J., Kosunen, A. (2008) Proposal for a patient database on cardiac interventional exposures for epidemiological studies, Radiat. Prot. Dosim. 129, 96-99.Google ScholarPubMed
NRC (2006) National Research Council of the National Academies, Commitee to assess Health Risks from Exposure to Low Levels of Ionizing Radiations; Nuclear and Radiation Studies Board, Division on Earth and Life Studies Health Risks From Exposure to Low Levels of Ionizing Radiations: BEIRVII Phase 2. Washington DC: The National Academies Press.
Pantos, I., Patatoukas, G., Katritsis, D.G., Efstathopoulos, E. (2009) Patient radiation doses in interventional cardiology procedures, Curr. Cardiol. Rev. 5, 1-11.Google ScholarPubMed
Pattee, P.L., Johns, P.C., Chambers, R.J. (1993) Radiation risk to patients from percutaneous transluminal coronary angioplasty, J. Am. Coll. Cardiol. 22, 1044-1051.Google ScholarPubMed
Picano, E., Santoro, G., Vano, E. (2007a) Sustainability in the cardiac cath lab, Int. J. Cardiovasc. Im. 23, 143-147.Google ScholarPubMed
Picano, E., Vano, E., Semelka, R., Regulla, D. (2007b) The American College of Radiology white paper on radiation dose in medicine: deep impact on the practice of cardiovascular imaging, Cardiovasc. Ultrasound 5, 37.Google Scholar
Scanff, P., Donadieu, J., Pirard, P., Aubert, B. (2008) Population exposure to ionizing radiation from medical examinations in France, Brit. J. Radiol. 81, 204-213.Google ScholarPubMed
UNSCEAR (1993) Sources and effects of ionizing radiation. Report to the General Assembly, with scientific annexes.
UNSCEAR (2000) Sources and effects of ionizing radiation, Vol. 2, Annex G: Biological effects at low radiation doses, New-York, United Nations.
UNSCEAR (2006) Effects of ionizing radiation - United Nations Scientific Committee on the Effects of Atomic Radiation. New York, United Nations.
Wilson, R., Crouch, E.A. (1987) Risk assessment and comparisons: an introduction, Science (New York) 236, 267-270.Google Scholar