Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-23T02:16:48.775Z Has data issue: false hasContentIssue false

Absorbed radiation doses due to chronic ingestion of cesium-137 or strontium-90 by mice

Published online by Cambridge University Press:  04 July 2012

J.-M. Bertho
Affiliation:
Institut de radioprotection et de sûreté nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Laboratoire de radiotoxicologie expérimentale, BP 17, 92262 Fontenay-aux-Roses, France
N. Synhaeve
Affiliation:
Institut de radioprotection et de sûreté nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Laboratoire de radiotoxicologie expérimentale, BP 17, 92262 Fontenay-aux-Roses, France
H. Miloudi
Affiliation:
Institut de radioprotection et de sûreté nucléaire (IRSN), PRP-HOM, SDI, LEDI, Laboratoire d’évaluation de la dose interne, BP 17, 92262 Fontenay-aux-Roses, France
J. Stefani
Affiliation:
Institut de radioprotection et de sûreté nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Laboratoire de radiotoxicologie expérimentale, BP 17, 92262 Fontenay-aux-Roses, France
A. Desbrée
Affiliation:
Institut de radioprotection et de sûreté nucléaire (IRSN), PRP-HOM, SDI, LEDI, Laboratoire d’évaluation de la dose interne, BP 17, 92262 Fontenay-aux-Roses, France
E. Blanchardon
Affiliation:
Institut de radioprotection et de sûreté nucléaire (IRSN), PRP-HOM, SDI, LEDI, Laboratoire d’évaluation de la dose interne, BP 17, 92262 Fontenay-aux-Roses, France
I. Dublineau
Affiliation:
Institut de radioprotection et de sûreté nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Laboratoire de radiotoxicologie expérimentale, BP 17, 92262 Fontenay-aux-Roses, France
Get access

Abstract

The knowledge of the absorbed radiation dose is essential in order to interpret the results of animal experiments with chronic ingestion of radionuclides by rodents. In order to evaluate this absorbed dose, we applied the dose conversion factors proposed by ICRP publication 108 to mouse chronic ingestion experiments with 20 kBq.L-1137Cs- or 90Sr-contaminated water. The results indicated that whole-body absorbed doses were 9 mGy and 10 mGy by the end of 20 weeks of 137Cs or 90Sr ingestion, respectively. These results of dose calculations were compared with results obtained with a more refined method using published organ-specific absorbed fractions of energy. There was good agreement between the two methods, indicating that, despite the simple hypotheses used to apply the ICRP 108 dose conversion factors to our mouse model, this method allows one to calculate in a simple and reliable way the absorbed radiation dose received by the rodents during long-term experiments on chronic ingestion of radionuclides.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandazhevsky, Y.I. (2003) Chronic 137Cs incorporation in children’s organs. Swiss med wkly 133, 488-490.Google Scholar
Bertho, J.M., Faure, M.C., Louiba, S., Tourlonias, E., Stefani, J., Siffert, B., Paquet, F., Dublineau, I. (2011) Influence on the mouse immune system of chronic ingestion of 137Cs. J. Radiol. Prot. 31, 25-39.Google ScholarPubMed
Bertho, J.M., Louiba, S., Faure, M.C., Tourlonias, E., Stefani, J., Siffert, B., Paquet, F., Dublineau, I. (2010) Biodistribution of 137Cs in a mouse model of chronic contamination by ingestion and effects on the hematopoietic system. Radiat. Environ. Biophys. 49, 239-248.Google Scholar
Cooper, E.L., Zeiller, E., Ghods-Esphahani, A., Makarewicz, M., Schelenz, R., Frindik, O., Heilgeist, M., Kalus, W. (1992) Radioactivity in food and total diet samples collected in selected settlements in the USSR. J. Environ. Radioact. 17, 147-157.Google Scholar
Dahl, S.G., Allain, P., Marie, P.J., Mauras, Y., Boivin, G., Ammann, P., Tsouderos, Y., Delmas, P.D., Christiansen, C. (2001) Incorporation and distribution of strontium in bone. Bone 28, 446-453.Google ScholarPubMed
De Ruig, W.G., Van der Struijs, T.D. (1992) Radioactive contamination of food sampled in the areas of the USSR affected by the Chernobyl disaster. Analyst. 117, 545-548.Google ScholarPubMed
Grignard, E., Gueguen, Y., Grison, S., Lobaccaro, J.M., Gourmelon, P., Souidi, M. (2008) In vivo effects of chronic contamination with 137Cs on testicular and adrenal steroidogenesis. Arch. Toxicol. 82, 583-589.Google Scholar
Gueguen, Y., Lestaevel, P., Grandcolas, L., Baudelin, C., Grison, S., Jourdain, J.R., Gourmelon, P., Souidi, M. (2008) Chronic contamination of rats with 137Cs radionuclide: Impact on the cardiovascular system. Cardiovasc. Toxicol. 8, 33-40.Google Scholar
Handl, J., Beltz, D., Botsch, W., Harb, S., Jakob, D., Michel, R., Romantschuk, L.D. (2003) Evaluation of radioactive exposure from 137Cs in contaminated areas of northern Ukraine. Health Phys. 84, 502-517.Google Scholar
ICRP (2001) Publication 88, Doses to the embryo and fetus from intakes of radionuclides by the mother. Ann ICRP 31, 1-518. Pergamon press (Oxford).
ICRP (2008) Publication 108 Environmental protection: The concept and use of reference animals and plants. Ann ICRP 38, 1-242. Pergamon press (Oxford).
Keenan, M.A., Stabin, M.G., Segars, W.P., Fernald, M.J. (2010) Radar realistic animal model series for dose assessment. J. Nucl. Med. 51, 471-476.Google ScholarPubMed
Leggett, R.W., Williams,, L.R., Melo, D.R., Lipsztein, J.L.. (2003). A physiologically based biokinetic model for caesium in the human body. Sci. tot. environ. 317, 235-255.Google ScholarPubMed
Lestaevel, P., Dhieux, B., Tourlonias, E., Houpert, P., Paquet, F., Voisin, P., Aigueperse, J., Gourmelon, P. (2006) Evaluation of the effect of chronic exposure to 137Cs on sleep-wake cycle in rats. Toxicol. 226, 118-125.Google Scholar
Lestaevel, P., Grandcolas, L., Paquet, F., Voisin, P., Aigueperse, J., Gourmelon, P. (2008) Neuro-inflammatory response in rats chronically exposed to 137Cs. Neurotoxicol. 29, 343-348.Google Scholar
Lestaevel, P., Racine, R., Bensoussan, H., Rouas, C., Gueguen, Y., Dublineau, I., Bertho, J.M., Gourmelon, P., Jourdain, J.R., Souidi, M. (2010) Césium 137 : Propriétés et effets biologiques après contamination interne. Méd. Nucl. 34, 108-118.Google Scholar
Métivier H., Lorthioir S. (2000) Propriétés physiques et chimiques du césium, dans Le césium, de l’environnement à l’homme (D. Robeau, F. Daburon et H. Métivier eds) pp. 3-11. EDP sciences, Les Ulis.
Stabin, M.G., Peterson, T.E., Holburn, G.E., Emmons, M.A. (2006) Voxel-based mouse and rat models for internal dose calculations. J. Nucl. Med. 47, 655-659.Google Scholar
Synhaeve, N., Stefani, J., Tourlonias, E., Dublineau, I., Bertho, J.M. (2011) Biokinetics of 90Sr after chronic ingestion in a juvenile and adult mouse model. Radiat. Environ. Biophys. 50, 501-511.Google Scholar
Tissandié, E., Gueguen, Y., Lobaccaro, J.M., Aigueperse, J., Gourmelon, P., Paquet, F., Souidi, M. (2006) Chronic contamination with 137Cs affects vitamin D3 metabolism in rats. Toxicol. 225, 75-80.Google Scholar
Tourlonias, E., Bertho, J.M., Gurriaran, R., Voisin, P., Paquet, F. (2010) Distribution of 137Cs in rat tissues after various schedules of chronic ingestion. Health Phys. 99, 39-48.Google ScholarPubMed