Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-17T00:12:49.442Z Has data issue: false hasContentIssue false

Two Decades of Environmental Isotope Records in Croatia: Reconstruction of the Past and Prediction of Future Levels

Published online by Cambridge University Press:  18 July 2016

Ines Krajcar-Bronić
Affiliation:
Ruder Bošković Institute, P.O. Box 1016, 10001 Zagreb, Croatia
Nada Horvatinčić
Affiliation:
Ruder Bošković Institute, P.O. Box 1016, 10001 Zagreb, Croatia
Bogomil Obelić
Affiliation:
Ruder Bošković Institute, P.O. Box 1016, 10001 Zagreb, Croatia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A two-decade-long record of environmental isotopes (2H, 3H, 14C, 18O) in Croatia is presented and the data are statistically analyzed. The atmospheric 14C activity for the period before the actual measurements started is reconstructed by measuring tree rings from the clean-air sites, and the past tritium activity in precipitation is estimated by the correlation of our data with the Vienna station record. The long-term 3H record helped to determine a locally contaminated sampling site, and new clean sites are put into operation. The 14C data were fitted by an analytical function and the prediction of future levels is given assuming that the rate of the 14C releases remains constant. From the long-term stable isotope data record, the local meteoric water line and the temperature gradient of δ18O in precipitation are determined.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Bistrović, R., Krajcar Bronić, I., Horvatinčić, N., Obelić, B. and Vekić, B. 1994 Tritium as an indicator of a local contamination. Proceedings of the 2nd Symposium of the Croatian Radiation Protection Association, Zagreb, Croatia: 101–104 (in Croatian).Google Scholar
Dansgaard, W. 1964 Stable isotopes in precipitation. Tellus 16: 436468.CrossRefGoogle Scholar
Horvatinčić, N. 1980 Radiocarbon and tritium measurements in water samples and application of isotopic analyses in hydrology. Fizika 12(S2): 201–218.Google Scholar
Horvatinčić, N., Krajcar Bronić, I., Pezdić, J., Srdoč, D. and Obelić, B. 1986 The distribution of radioactive (3H, 14C) and stable (2H, 18O) isotopes in precipitation, surface and groundwaters of NW Yugoslavia. Nuclear Instruments and Methods in Physics Research B17: 550553.CrossRefGoogle Scholar
Horvatinčić, N., Krajcar Bronić, I., Obelić, B. and Srdoč, D. 1989 A comparison of tritium in precipitation and in air moisture. In Radiation Protection: Selected Topics. Proceedings of the International Symposium, Dubrovnik, Croatia: 443–448.Google Scholar
Horvatinčić, N., Srdoč, D., Obelić, B. and Krajcar Bronić, I. 1990 Radiocarbon dating of intercomparison samples at the Zagreb Radiocarbon Laboratory. Radiocarbon 32(3): 295300.CrossRefGoogle Scholar
Horvatinčić, N., Krajcar Bronić, I. and Obelić, B. 1992 Tritium in the atmosphere over Croatia and Slovenia. Proceedings of the International Symposium on Environmental Contamination in Central and East Europe, Budapest, Hungary: 163–165.Google Scholar
Horvatinčić, N., Krajcar Bronić, I., Obelić, B. and Bistrović, R. 1996a Long-time atmospheric tritium record in Croatia. Acta Geologica Hungarica 39(Suppl.): 81–84.Google Scholar
Horvatinčić, N., Krajcar Bronić, I. and Obelić, B. 1996b Long-time atmospheric 3H and 14C record in Croatia, Proceedings of the 9th Congress of International Radiation Protection Association (IRPA 9 Congress) Vienna: 676–678.Google Scholar
Hut, G. 1986 IAEA Report: 1986 Intercomparison of low-level tritium measurement in water.Google Scholar
IAEA 1969, 1970, 1971, 1973, 1975, 1979, 1983, 1986, 1990, 1994 Environmental Isotope Data Nos. 1–10: World Survey of Isotope Concentration in Precipitation, Technical Reports Series Nos. 69, 117, 129, 147, 165, 192, 226, 264, 311, 371.Google Scholar
Kozák, K. and Rank, D. 1981 A feasibility study on the retrospective evaluation of anomalous local tritium fallout by the analysis of tree rings from selected districts in Austria and Hungary. Final Report to the IAEA, Contracts 3451/RB and 3452/RB: 131.Google Scholar
Kozák, K., Obelić, B. and Horvatinčić, N. 1989 Tritium and 14C in tree rings of the last three decades. In Long, A., Srdoč, D. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 766770.CrossRefGoogle Scholar
Krajcar Bronić, I., Horvatinčić, N., Srdoč, D. and Obelić, B. 1992 Tritium concentration in the atmosphere over NW Yugoslavia. In Povinec, P., ed., Proceedings of the 14th Europhysics Conference on Nuclear Physics, Bratislava, Slovakia. Rare Nuclear Processes. Singapore, World Scientific: 381386.Google Scholar
Krajcar Bronić, I., Horvatinčić, N., Obelić, B. and Bistrović, R. 1995 Radiocarbon intercomparison studies at the Ruder Bošković Institute. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(3): 805811.CrossRefGoogle Scholar
Krajcar Bronić, I., Obelić, B., Srdoč, D. and Hernaus, E. 1986 Tritium Activity in Precipitation and in Tap Water of NW Yugoslavia after the Chernobyl Accident. Proceedings of the 4th European Congress of IRPA, Salzburg: 761–764.Google Scholar
Kuc, T. and Zimnoch, M. 1998 Changes of the CO2 sources and sinks in a polluted urban area (southern Poland) over the last decade, derived from the carbon isotope composition. Radiocarbon, this issue.CrossRefGoogle Scholar
Levin, I., Bösinger, R., Bonani, G., Francey, R. J., Kromer, B., Münnich, K. O., Suter, M., Trivett, N. B. A. and Wölfli, W. 1992 Radiocarbon in atmospheric carbon dioxide and methane: Global distribution and trends. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 503518.CrossRefGoogle Scholar
Levin, I., Graul, R. and Trivett, N. B. A. 1995 Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B: 2334.CrossRefGoogle Scholar
Levin, I. and Kromer, B. 1997 Twenty years of high-precision atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2): 205218.CrossRefGoogle Scholar
Levin, I., Münnich, K. O. and Weiss, W. 1980 The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 379391.CrossRefGoogle Scholar
McNeely, R. 1994 Long-term environmental monitoring of 14C levels in the Ottawa region. Environment International 20: 675679.CrossRefGoogle Scholar
Meijer, H. A. J., van der Plicht, H., Gislefoss, J. S. and Nydal, R. 1994 Comparing long-term atmospheric 14C and 3H records near Groningen, the Netherlands with Fruholmen, Norway and Izaña, Canary Islands 14C stations. Radiocarbon 37(1): 3950.CrossRefGoogle Scholar
Obelić, B., Krajcar Bronić, I., Srdoč, D. and Horvatinčić, N. 1986 Environmental 14C levels around the 632 MWe Nuclear Power Plant Krško in Yugoslavia. Radiocarbon 28(2A): 644–648.CrossRefGoogle Scholar
Obelić, B., Krajcar Bronić, I., Horvatinčić, N. and Srdoč, D. 1987 14C activity in plants and in the atmosphere during the last decade. In Marković, P., Horvat, Đ. and Marković, S., eds., Proceedings of the 14th Regional Congress of IRPA, Kupari 1987: 287290.Google Scholar
Obelić, B., Horvatinčić, N., Krajcar Bronić, I. and Kozák, K. 1992 Concentration of 14C and 3H in tree-rings from Plitvice National Park region. In Richter, P. I. and Herndon, R. C., eds., Proceedings of the International Symposium on Environmental Contamination in Central and East Europe, Budapest, 1992: 505507.Google Scholar
Olsson, I. U. 1989 Recent 14C activity in the atmosphere, “clean air” and the Chernobyl effect. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 740746.CrossRefGoogle Scholar
Otlet, R. L., Fulker, M. J. and Walker, A. J. 1992 Environmental impact of atmospheric carbon-14 emissions resulting from the nuclear energy cycle. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 519534.CrossRefGoogle Scholar
Rożanski, K., Stichler, W., Gonfiantini, R., Scott, E. M., Beukens, R. P., Kromer, B. and van der Plicht, J. 1992 The IAEA Intercomparison exercise 1990. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 506519.CrossRefGoogle Scholar
Rożanski, K., Gonfiantini, G. and Araguas-Araguas, L. 1991 Tritium in the global atmosphere: Distribution patterns and recent trends. Journal of Physical Geography 17(Suppl.): S523–536.Google Scholar
Rożanski, K., Araguas-Araguas, L. and Gonfiantini, R. 1993 Isotopic patterns in modern global precipitation. Geophysical Monograph 78: 136.Google Scholar
Segl, M., Levin, I., Schoch-Fischer, H., Münnich, M., Kromer, B., Tschiersch, J. and Münnich, K. O. 1983 Anthropogenic 14C variations. Radiocarbon 25(2): 583592.CrossRefGoogle Scholar
Scott, E. M., Harkness, D. D., Miller, B. F., Cook, G. T. and Baxter, M. S. 1992 Announcement of a further international intercomparison exercise. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 528532.CrossRefGoogle Scholar
Scott, E. M., Long, A. and Kra, R. S., eds. 1990 Proceedings of the International Workshop on Intercomparison of Radiocarbon Laboratories. Radiocarbon 32(3): 253397.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Srdoč, D., Breyer, B. and Sliepčević, A. 1971 Ruder Bošković Institute radiocarbon measurements I. Radiocarbon 13(1): 135140.CrossRefGoogle Scholar