Hostname: page-component-5d59c44645-jqctd Total loading time: 0 Render date: 2024-03-01T22:20:07.090Z Has data issue: false hasContentIssue false

Selection and Treatment of Data for Radiocarbon Calibration: An Update to the International Calibration (IntCal) Criteria

Published online by Cambridge University Press:  09 February 2016

Paula J Reimer*
14CHRONO Centre for Climate, the Environment and Chronology, School of Geography, Archaeology and Palaeoecology, Queen's University Belfast BT7 1NN, United Kingdom
Edouard Bard
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopole de l'Arbois BP 80, 13545 Aix en Provence Cedex 4, France
Alex Bayliss
English Heritage, 1 Waterhouse Square, 138-142 Holborn, London EC1N 2ST, United Kingdom
J Warren Beck
Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
Paul G Blackwell
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
Christopher Bronk Ramsey
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford 0X1 3QY, United Kingdom
David M Brown
14CHRONO Centre for Climate, the Environment and Chronology, School of Geography, Archaeology and Palaeoecology, Queen's University Belfast BT7 1NN, United Kingdom
Caitlin E Buck
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
R Lawrence Edwards
Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455-0231, USA
Michael Friedrich
Institute of Botany (210), Hohenheim University, D-70593 Stuttgart, Germany Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
Pieter M Grootes
Institute for Ecosystem Research, Christian-Albrechts-Universität zu Kiel 24098, Germany
Thomas P Guilderson
Center for Accelerator Mass Spectrometry L-397, Lawrence Livermore National Laboratory, Livermore, California 94550, USA Ocean Sciences Department, University of California-Santa Cruz, Santa Cruz, California 95064, USA
Haflidi Haflidason
Department of Earth Science, University of Bergen, N-5007 Bergen, Norway
Irka Hajdas
Labor fur Ionenstrahlphysik, ETH, 8092 Zurich, Switzerland
Christine Hatté
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212 CEA-CNRS-UVSQ, Domaine du CNRS, F-91198 Gif-sur-Yvette, France
Timothy J Heaton
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
Alan G Hogg
Radiocarbon Dating Laboratory, University of Waikato, Private Bag 3105, Hamilton, New Zealand
Konrad A Hughen
Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
K Felix Kaiser
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstr. 111, 8903 Birmensdorf, Switzerland Department of Geography, University of Zurich-Irchel, 8057 Zurich, Switzerland
Bernd Kromer
Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
Sturt W Manning
Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology, Cornell Tree Ring Laboratory, Cornell University, Ithaca, New York 14853, USA
Ron W Reimer
14CHRONO Centre for Climate, the Environment and Chronology, School of Geography, Archaeology and Palaeoecology, Queen's University Belfast BT7 1NN, United Kingdom
David A Richards
School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom
E Marian Scott
School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, Scotland
John R Southon
Department of Earth System Science, University of California–Irvine, Irvine, California 92697, USA
Christian S M Turney
Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
Johannes van der Plicht
Centrum voor Isotopen Onderzoek, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, the Netherlands
2Corresponding author. Email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-quality data from appropriate archives are needed for the continuing improvement of radiocarbon calibration curves. We discuss here the basic assumptions behind 14C dating that necessitate calibration and the relative strengths and weaknesses of archives from which calibration data are obtained. We also highlight the procedures, problems, and uncertainties involved in determining atmospheric and surface ocean 14C/12C in these archives, including a discussion of the various methods used to derive an independent absolute timescale and uncertainty. The types of data required for the current IntCal database and calibration curve model are tabulated with examples.

Research Article
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 



IntCal Oversight Committee members.


Abbott, MB, Stafford, TW Jr. 1996. Radiocarbon geochemistry of modern and ancient arctic lake systems, Baffin Island, Canada. Quaternary Research 45(3):300–11.Google Scholar
Andersson, AJ, Mackenzie, FT. 2011. Technical comment on Kroeker et al. (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13, 1419–1434. Ecology Letters 14(8):E1E2.CrossRefGoogle ScholarPubMed
Andersson, AJ, Mackenzie, FT, Bates, NR. 2008. Life on the margin: implications of ocean acidification on Mgcalcite, high latitude and cold-water marine calcifiers. Marine Ecology Progress Series 373:265–73.Google Scholar
Ascough, PL, Bird, MI, Brock, F, Higham, TFG, Meredith, W, Snape, CE, Vane, CH. 2009. Hydropyrolysis as a new tool for radiocarbon pre-treatment and the quantification of black carbon. Quaternary Geochronology 4(2):140–7.Google Scholar
Austin, WEN, Bard, E, Hunt, JB, Kroon, D, Peacock, JD. 1995. The 14C age of the Icelandic Vedde Ash: implications for Younger Dryas marine reservoir age corrections. Radiocarbon 37(1):5362.Google Scholar
Austin, WEN, Telford, RJ, Ninnemann, US, Brown, L, Wilson, LJ, Small, DP, Bryant, CL. 2011. North Atlantic reservoir ages linked to high Younger Dryas atmospheric radiocarbon concentrations. Global and Planetary Change 79(3–4):226–33.Google Scholar
Baillie, MGL. 1982. Tree-Ring Dating and Archaeology. London: Croom Helm. 274 p.Google Scholar
Baillie, MGL, Pilcher, JR, Pearson, GW. 1983. Dendrochronology at Belfast as a background to high-precision calibration. Radiocarbon 25(2):171–8.Google Scholar
Baldini, JUL. 2010. Cave atmosphere controls on stalagmite growth rate and palaeoclimate records. In: Pedley, HM, Rogerson, M, editors. Tufas and Speleothems: Unravelling the Microbial and Physical Controls. London: London Geological Society, p 283–94.Google Scholar
Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3(6):635–45.Google Scholar
Bard, E, Arnold, M, Duprat, J, Moyes, J, Duplessy, J-C. 1987. Reconstruction of the last deglaciation: deconvolved records of δ18O profiles, micropaleontological variations and accelerator mass spectrometric 14C dating. Climate Dynamics 1(2):101–12.Google Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A. 1990a. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345(6274):405–10.Google Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A, Mathieu, G, Arnold, M. 1990b. U/Th and 14C ages of corals from Barbados and their use for calibrating the 14C time scale beyond 9000 years B.R Nuclear Instruments and Methods in Physics Research B 52(3–4):461–8.Google Scholar
Bard, E, Arnold, M, Mangerud, J, Paterne, M, Labeyrie, L, Duprat, J, Mélières, MA, Sonstegaard, E, Duplessy, J-C. 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126(4):275–87.Google Scholar
Bard, E, Menot-Combes, G, Rostek, F. 2004. Present status of radiocarbon calibration and comparison records based on Polynesian corals and Iberian Margin sediments. Radiocarbon 46(3):1189–202.Google Scholar
Bard, E, Ménot, G, Rostek, F, Licari, L, Böning, P, Edwards, RL, Cheng, H, Wang, YJ, Heaton, TJ. 2013. Radiocarbon calibration/comparison records based on marine sediments from the Pakistan and Iberian margins. Radiocarbon 55(4), this issue.Google Scholar
Barker, S, Broecker, W, Clark, E, Hajdas, I. 2007. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone. Paleoceanography 22:PA2205, doi:10.1029/2006PA001354.Google Scholar
Barnekow, L, Possnert, G, Sandgren, P. 1998. AMS 14C chronologies of Holocene lake sediments in the Abisko area, northern Sweden – a comparison between dated bulk sediment and macrofossil samples. GFF 120(1):5967.Google Scholar
Beck, JW, Richards, DA, Edwards, RL, Silverman, BW, Smart, PL, Donahue, DJ, Hererra-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292(5526):2453–8.Google Scholar
Becker, B. 1992. The history of dendrochronology and radiocarbon calibration. In: Taylor, RE, Long, A, Kra, RS, editors. Radiocarbon After Four Decades. New York: Springer, p 3449.CrossRefGoogle Scholar
Becker, B, Kromer, B. 1993. The continental tree-ring record – absolute chronology, 14C calibration and climatic change at 11 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 103(1–2):6771.Google Scholar
Blackwell, PG, Buck, CE. 2008. Estimating radiocarbon calibration curves. Bayesian Analysis 3(2):225–48.Google Scholar
Bond, G, Broecker, W, Johnsen, S, McManus, J, Labeyrie, L, Jouzel, J, Bonani, G. 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365(6442):143–7.Google Scholar
Bondevik, S, Mangerud, J, Birks, HH, Gulliksen, S, Reimer, P. 2006. Changes in North Atlantic radiocarbon reservoir ages during the Aller⊘d and Younger Dryas. Science 312(5779):1514–7.Google Scholar
Boston, HL. 1986. A discussion of the adaptations for carbon acquisition in relation to the growth strategy of aquatic isoetids. Aquatic Botany 26:259–70.Google Scholar
Brauer, A. 2004. Annually laminated lake sediments and their palaeoclimatic relevance. In: Fischer, H, Kumke, T, Lohmann, G, Flöser, G, Miller, H, Von Storch, H, Negendank, J, editors. The Climate in Historical Times. Towards a Synthesis of Holocene Proxy Data and Climate Models. Berlin: Springer, p 109–27.Google Scholar
Braziunas, TF, Fung, IY, Stuiver, M. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochemical Cycles 9(4):565–84.Google Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381–9.Google Scholar
Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL, Tarasov, PE, Haraguchi, T, Gotanda, K, Yonenobu, H, Yokoyama, Y, Tada, R, Nakagawa, T. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338(6105):370–4.Google Scholar
Bryant, C, Carmi, I, Cook, GT, Gulliksen, S, Harkness, DD, Heinemeier, J, McGee, E, Naysmith, P, Possnert, G, Scott, EM, van der Plicht, J, Van Strydonck, M. 2001. Is comparability of 14C dates an issue? A status report on the Fourth International Radiocarbon Intercomparison. Radiocarbon 43(2A):321–4.CrossRefGoogle Scholar
Burr, GS, Edwards, RL, Donahue, DJ, Druffel, ERM, Taylor, FW. 1992. Mass-spectrometric 14C and U-Th measurements in coral. Radiocarbon 34(3):611–8Google Scholar
Butzin, M, Prange, M, Lohmann, G. 2005. Radiocarbon simulations for the glacial ocean: the effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth and Planetary Science Letters 235(1–2):4561.Google Scholar
Cain, WF, Suess, HE. 1976. Carbon 14 in tree rings. Journal of Geophysical Research-Oceans and Atmospheres 81(21):3688–94.Google Scholar
Carolin, SA, Cobb, KM, Adkins, JF, Clark, B, Conroy, JL, Lejau, S, Malang, J, Tuen, AA. 2013. Varied response of western Pacific hydrology to climate forcings over the last glacial period. Science 340(6140):1564–6.Google Scholar
Chappell, J, Broecker, WS, Polach, HA, Thorn, BG. 1974. Problem of dating Upper Pleistocene sea levels from coral reef areas. In: Proceedings of the 2nd International Coral Reef Symposium. Volume 2. Brisbane, p 561–71.Google Scholar
Cheng, H, Edwards, RL, Hoff, J, Gallup, CD, Richards, DA, Asmeron, Y. 2000. The half-lives of uranium-234 and thorium-230. Chemical Geology 169(1–2):1733.Google Scholar
Cheng, H, Edwards, RL, Shen, CC, Polyak, VJ, Asmerom, Y, Woodhead, J, Hellstrom, J, Wang, YJ, Kong, XG, Spötl, C, Wang, XF, Alexander, EC Jr. 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371–372:8291.Google Scholar
Chiu, T-C, Fairbanks, RG, Mortlock, RA, Bloom, AL. 2005. Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals. Quaternary Science Reviews 24(16–17):1797–808.Google Scholar
Christen, JA, Litton, CD. 1995. A Bayesian approach to wiggle-matching. Journal of Archaeological Science 22(6):719–25.Google Scholar
Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW, Cabioch, G, Beck, JW, Cheng, H, Moore, J. 2004. Radiocarbon calibration and comparison to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46(3):1127–60.Google Scholar
de Vries, H, Barendsen, GW. 1952. A new technique for the measurement of age by radiocarbon. Physica 18: 652.Google Scholar
Dee, MW, Brock, F, Harris, SA, Bronk Ramsey, C, Shortland, AJ, Higham, TFG, Rowland, JM. 2010. Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt. Journal of Archaeological Science 37(4):687–93.Google Scholar
Douka, K, Higham, T, Sinitsyn, A. 2010. The influence of pretreatment chemistry on the radiocarbon dating of Campanian Ignimbrite-aged charcoal from Kostenki 14 (Russia). Quaternary Research 73(3):583–7.Google Scholar
Druffel, ERM, Robinson, LF, Griffin, S, Halley, RB, Southon, JR, Adkins, JF. 2008. Low reservoir ages for the surface ocean from mid-Holocene Florida corals. Paleoceanography 23: PA2209, doi::10.1029/2007PA001527.Google Scholar
Durand, N, Deschamps, P, Bard, E, Hamelin, B, Camoin, G, Thomas, AL, Henderson, GM, Yokoyama, Y, Matsuzaki, H. 2013. Comparison of 14C and U-Th ages in corals from IODP #310 cores offshore Tahiti. Radiocarbon 55(4), this issue.Google Scholar
Eckstein, D, Bauch, J. 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230–50.Google Scholar
Edwards, RL, Beck, JW, Burr, GS, Donahue, DJ, Chappell, JMA, Bloom, AL, Druffel, ERM, Taylor, FW. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260(5110):962–8.Google Scholar
Esat, TM, Yokoyama, Y. 2006. Variability in the uranium isotopic composition of the oceans over glacial-interglacial timescales. Geochimica et Cosmochimica Acta 70(16):4140–50.Google Scholar
Ferguson, CW. 1969. A 7104-year annual tree-ring chronology for bristlecone pine, Pinus aristata, from the White Mountains, California. Tree-Ring Bulletin 29:129.Google Scholar
Ferguson, CW, Graybill, DA. 1983. Dendrochronology of bristlecone pine: a progress report. Radiocarbon 25(2):287–8.CrossRefGoogle Scholar
Fohlmeister, J, Kromer, B, Mangini, A. 2011. The influence of soil organic matter age spectrum on the reconstruction of atmospheric 14C levels via stalagmites. Radiocarbon 53(1):99115.Google Scholar
Franke, J, Paul, A, Schulz, M. 2008. Modeling variations of marine reservoir ages during the last 45 000 years. Climate of the Past 4:125–36.Google Scholar
Friedrich, M, Kromer, B, Spurk, H, Hofmann, J, Kaiser, KF. 1999. Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies. Quaternary International 61(1):2739.Google Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):1111–22.Google Scholar
Genty, D, Baker, A, Massault, M, Proctor, C, Gilmour, M, Pons-Branchu, E, Hamelin, B. 2001. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica et Cosmochimica Acta 65(20):3443–57.Google Scholar
Griffiths, ML, Fohlmeister, J, Drysdale, RN, Hua, Q, Johnson, KR, Hellstrom, JC, Gagan, MK, Zhao, JX. 2012. Hydrological control of the dead carbon fraction in a Holocene tropical speleothem. Quaternary Geochronology 14:8193.Google Scholar
Grootes, PM, Farwell, GW, Schmidt, FH, Leach, DD, Stuiver, M. 1989. Rapid response of tree cellulose radiocarbon content to changes in atmospheric 14CO2 concentration. Tellus B 41(2):134–48.Google Scholar
Gulliksen, S, Scott, M. 1995. Report of the TIRI workshop, Saturday 13 August 1994. Radiocarbon 37(2):820–1.Google Scholar
Haflidason, H, Eiriksson, J, Van Kreveld, S. 2000. The tephrochronology of Iceland and the North Atlantic region during the Middle and Late Quaternary: a review. Journal of Quaternary Science 15(1):322.Google Scholar
Hajdas, I, Bonani, G, Zolitschka, B, Brauer, A, Negendank, J. 1998. 14C ages of terrestrial macrofossils from Lago Grande di Monticchio (Italy). Radiocarbon 40(2):803–7.Google Scholar
Hatté, C, Jull, AJT. 2007. Radiocarbon dating: plant macrofossils. In: Elias, SA, editor. Encyclopedia of Quaternary Science. Oxford: Elsevier, p 2958–65.Google Scholar
Hatté, C, Morvan, J, Noury, C, Paterne, M. 2001. Is classical acid-alkali-acid treatment responsible for contamination? An alternative proposition. Radiocarbon 43(2A):177–82.Google Scholar
Heaton, TJ, Blackwell, PG, Buck, CE. 2009. A Bayesian approach to the estimation of radiocarbon calibration curves: the IntCal09 methodology. Radiocarbon 51(4):1151–64.Google Scholar
Heaton, TJ, Bard, E, Hughen, K. 2013. Elastic tie-pointing—transferring chronologies between records via a Gaussian process. Radiocarbon 55(4), this issue.Google Scholar
Heier-Nielsen, S, Conradsen, K, Heinemeier, J, Knudsen, KL, Nielsen, HL, Rud, N, Sveinbjörnsdóttir, AE. 1995. Radiocarbon dating of shells and foraminifera from the Skagen Core, Denmark: evidence of reworking. Radiocarbon 37(2):119–30.Google Scholar
Hendy, CH. 1971. The isotopic geochemistry of speleothems—I. the calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35(8):801–24.Google Scholar
Higham, T, Brock, F, Peresani, M, Broglio, A, Wood, R, Douka, K. 2009. Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quaternary Science Reviews 28(13–14):1257–67.Google Scholar
Hogg, AG, Fifield, LK, Turney, CSM, Palmer, JG, Galbraith, R, Baillie, MGL. 2006. Dating ancient wood by high sensitivity liquid scintillation counting and accelerator mass spectrometry – pushing the boundaries. Quaternary Geochronology 1(4):241–8.CrossRefGoogle Scholar
Hogg, A, Palmer, J, Boswijk, G, Reimer, P, Brown, D. 2009. Investigating the interhemispheric 14C offset in the 1st millennium AD and assessment of laboratory bias and calibration errors. Radiocarbon 51(4):1177–86.Google Scholar
Hogg, A, Palmer, J, Boswijk, G, Turney, C. 2011. High-precision radiocarbon measurements of tree-ring dated wood from New Zealand: 195 BC–AD 995. Radiocarbon 53(3):529–42.Google Scholar
Hua, Q, Barbetti, M, Zoppi, U, Fink, D, Watanasak, M, Jacobsen, GE. 2004. Radiocarbon in tropical tree rings during the Little Ice Age. Nuclear Instruments and Methods in Physics Research B 223–224:489–94.Google Scholar
Hua, Q, Barbetti, M, Fink, D, Kaiser, KF, Friedrich, M, Kromer, B, Levchenko, VA, Zoppi, U, Smith, AM, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25–26):2982–90.Google Scholar
Huber, B. 1952. Beitraege zur Methodik der Jahrringchronologie. Gegenlaeufigkeitsprozent und Gegenlaeufigkeitsstruktur als Masstaebe bei der Sicherung jahrringchronologischer Datierungen. (Contributions to the methodology of tree-ring analysis. I. Percent and structure of disagreement as a measure of accuracy in tree-ring dating). Holzforschung - International Journal of the Biology, Chemistry, Physics and Technology of Wood 6:33–7.Google Scholar
Hughen, KA, Overpeck, JT, Peterson, LC, Trumbore, S. 1996. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380(6569):51–4.Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, JR, Peterson, LC. 1998. A new 14C calibration data set for the last deglaciation based on marine varves. Radiocarbon 40(1):483–94.Google Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1059–86.Google Scholar
Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23–24):3216–27.Google Scholar
Kaiser, KF, Friedrich, M, Miramont, C, Kromer, B, Sgier, M, Schaub, M, Boeren, I, Remmele, S, Talamo, S, Guibal, F, Sivan, O. 2012. Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute – an inventory. Quaternary Science Reviews 36:7890.Google Scholar
Kitagawa, H, van der Plicht, J. 1998. A 40,000-year varve chronology from Lake Suigetsu, Japan: extension of the 14C calibration curve. Radiocarbon 40(1):505–15.Google Scholar
Klein, J, Lerman, JC, Damon, PE, Ralph, EK. 1982. Calibration of radiocarbon-dates - tables based on the consensus data of the Workshop on Calibrating the Radiocarbon Time Scale. Radiocarbon 24(2):103–50.CrossRefGoogle Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 gradients in the troposphere: magnitude, mechanisms and consequences. Science 294(5551):2529–32.Google Scholar
Kromer, B, Friedrich, M, Hughen, KA, Kaiser, F, Remmele, S, Schaub, M, Talamo, S. 2004. Late glacial 14C ages from a floating, 1382–ring pine chronology. Radiocarbon 46(3):1203–9.Google Scholar
Lamoureux, SF. 2001. Varve chronology techniques. In: Last, WM, Smol, JP, editors. Developments in Paleoenvironmental Research (DPER), Tracking Environmental Change Using Lake Sediments. Dordrecht: Kluwer. p 247–60.Google Scholar
Le Clercq, M, van der Plicht, J, Gröning, M. 1998. New 14C reference materials with activities of 15 and 50 pMC. Radiocarbon 40(1):295–7.Google Scholar
Leuschner, HH, Delorme, A. 1988. Tree-ring work in Goettingen. Absolute oak chronologies back to 6255 BC. PACT 22(II.5):123–32.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.CrossRefGoogle Scholar
Linick, TW, Suess, HE, Becker, B. 1985. La Jolla measurements of radiocarbon in South German oak tree-ring chronologies. Radiocarbon 27(1):2032.Google Scholar
Löwemark, L, Grootes, PM. 2004. Large age differences between planktic foraminifers caused by abundance variations and Zoophycos bioturbation. Paleoceanography 19(2): PA2001, doi:10.1029/2003PA000949.Google Scholar
Maberly, SC, Spcnce, DHN. 1983. Photosynthetic inorganic carbon use by freshwater plants. Journal of Ecology 71(3):705–24.Google Scholar
Marshall, M, Schlolaut, G, Nakagawa, T, Lamb, H, Brauer, A, Staff, R, Bronk Ramsey, C, Tarasov, P, Gotanda, K, Haraguchi, T, Yokoyama, Y, Yonenobu, H, Tada, R, Suigetsu 2006 Project Members. 2012. A novel approach to varve counting using μXRF and X-radiography in combination with thin-section microscopy, applied to the Late Glacial chronology from Lake Suigetsu, Japan. Quaternary Geochronology 13:7080.Google Scholar
Matsumoto, K, Yokoyama, Y. 2013. Atmospheric Δ14C reduction in simulations of Atlantic overturning circulation shutdown. Global Biogeochemical Cycles 27(2):296304.Google Scholar
McLean, N, Bowring, SA, Bowring, JF, Condon, DJ, Heizler, M, Parrish, R, Ramezani, J, Schoene, B. 2008. The EARTHTIME initiative: a review of accomplishments and promise. Presented at the International Geological Congress, 6–14 August 2008, Oslo.Google Scholar
Morse, JW, Mackenzie, FT. 1990. Geochemistry of Sedimentary Carbonates. Amsterdam: Elsevier. 707 p.Google Scholar
Munro, MAR. 1984. An improved algorithm for crossdating tree-ring series. Tree-Ring Bulletin 44:1727.Google Scholar
Nadeau, M-J, Grootes, PM, Voelker, A, Bruhn, F, Duhr, A, Oriwall, A. 2001. Carbonate 14C background: Does it have multiple personalities? Radiocarbon 43(2A):169–76.Google Scholar
Niu, M, Heaton, TJ, Blackwell, PG, Buck, CE. 2013. The Bayesian approach to radiocarbon calibration curve estimation: the IntCal13, Marine 13, and SHCal13 methodologies. Radiocarbon 55(4), this issue.Google Scholar
Ojala, AEK, Francus, P, Zolitschka, B, Besonen, M, Lamoureux, SF. 2012. Characteristics of sedimentary varve chronologies – a review. Quaternary Science Reviews 43:4560.Google Scholar
Oswald, WW, Anderson, PM, Brown, TA, Brubaker, LB, Hu, FS, Lozhkin, AV, Tinner, W, Kaltenrieder, P. 2005. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. The Holocene 15(5):758–67.Google Scholar
Palmer, J, Lorrey, A, Turney, CSM, Hogg, A, Baillie, M, Fifield, K, Ogden, J. 2006. Extension of New Zealand kauri (Agathis australis) tree-ring chronologies into Oxygen Isotope Stage (OIS) 3. Journal of Quaternary Science 21(7):779–87.Google Scholar
Pasquier-Cardin, A, Allard, P, Ferreira, T, Hatté, C, Coutinho, R, Fontugne, M, Jaudon, M. 1999. Magma-derived CO2 emissions recorded in 14C and 13C content of plants growing in Furnas caldera, Azores. Journal of Volcanology and Geothermal Research 92(1–2):195207.Google Scholar
Pearson, GW. 1986. Precise calendrical dating of known growth-period samples using a “curve fitting” technique. Radiocarbon 28(2A):292–9.CrossRefGoogle Scholar
Pilcher, JR, Baillie, MGL, Schmidt, B, Becker, B. 1984. A 7,272-year tree-ring chronology for western Europe. Nature 312(5990):150–2.CrossRefGoogle Scholar
Railsback, LB. 2006. Some Fundamentals of Mineralogy and Geochemistry. [WWW document]. Department of Geology, University of Georgia. URL: Scholar
Reimer, PJ, Reimer, RW. 2007. Radiocarbon dating: calibration. In: Elias, SA, editor. Encyclopedia of Quaternary Science. Oxford: Elsevier, p 2941–9.Google Scholar
Reimer, PJ, Hughen, KA, Guilderson, TP, McCormac, G, Baillie, MGL, Bard, E, Barratt, P, Beck, JW, Buck, CE, Damon, PE, Friedrich, M, Kromer, B, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, van der Plicht, J. 2002. Preliminary report of the first workshop of the IntCal04 radiocarbon calibration/comparison working group. Radiocarbon 44(3):653–61.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, WJ, Bertrand, C, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Beck, JW, Blackwell, PG, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Reimer, RW, Southon, JR, Stuiver, M, van der Plicht, J, Weyhenmeyer, CE. 2006. Comment on “Radiocarbon calibration curve spanning 0 to 50,000 years B.P. based on paired 230Th/234U/238U and 14C dates on pristine corals” by R.G Fairbanks et al. and “Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals” by T.-C. Chiu et al. (Quaternary Science Reviews 24 (2005) 1797–1808). Quaternary Science Reviews 25(7–8):855–62.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Richards, DA, Dorale, JA. 2003. Uranium-series chronology and environmental applications of speleothems. Uranium-Series Geochemistry 52(5):407–60.Google Scholar
Robinson, LF, Henderson, GM, Hall, L, Matthews, I. 2004. Climatic control of riverine and seawater uranium-isotope ratios. Science 305(5685):851–4.Google Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3):506–19.CrossRefGoogle Scholar
Rubin, M, Lockwood, JP, Friedamn, I. 1987. Effects of volcanic emanations on carbon-isotope content of modern plants near Kilauea Volcano. In: Decker, RW, Wright, TL, Stauffer, PH, editors. Volcanism in Hawaii. Washington, DC: US Government Printing Office, p 209–11.Google Scholar
Rudzka, D, McDermott, F, Baldini, LM, Fleitmann, D, Moreno, A, Stoll, H. 2011. The coupled δ13C-radiocarbon systematics of three Late Glacial/early Holocene speleothems; insights into soil and cave processes at climatic transitions. Geochimica et Cosmochimica Acta 75(15):4321–39.Google Scholar
Sarnthein, M, Grootes, PM, Kennett, JP, Nadeau, M-J. 2007. 14C reservoir ages show deglacial changes in ocean currents and carbon cycle. In: Schmittner, A, Chiang, JCH, Hemming, SR, editors. Ocean Circulation: Mechanisms and Impacts - Past and Future Changes of Meridional Overturning. Geophysical Monograph 173. Washington, DC: American Geophysical Union, p 175–96.Google Scholar
Sarnthein, M, Schneider, B, Grootes, PM. 2013. Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean. Climate of the Past Discussions 9:925–65.Google Scholar
Schaub, M, Büntgen, U, Kaiser, KF, Kromer, B, Talamo, S, Andersen, KK, Rasmussen, SO. 2008. Lateglacial environmental variability from Swiss tree rings. Quaternary Science Reviews 27(1–2):2941.Google Scholar
Schlolaut, G, Marshall, MH, Brauer, A, Nakagawa, T, Lamb, HF, Staff, RA, Bronk Ramsey, C, Bryant, CL, Brock, F, Kossler, A, Tarasov, PE, Yokoyama, Y, Tada, R, Haraguchi, T, Suigetsu 2006 Project Members. 2012. An automated method for varve interpolation and its application to the Late Glacial chronology from Lake Suigetsu, Japan. Quaternary Geochronology 13:5269.Google Scholar
Schmidt, B, Schwabedissen, H. 1982. Ausbau des mitteleuropäischen Eichen-Jahrringkalenders bis in neolithische Zeit (2061 v.Chr.). Archäologisches Korrespondenzblatt 12:107–8.Google Scholar
Scott, EM. 2003. The Third International Radiocarbon Intercomparison (TIRI) and the Fourth International Radiocarbon (FIRI) 1999–2002: results, analysis, and conclusions. Radiocarbon 45(2):135408.Google Scholar
Scott, EM, Cook, GT, Naysmith, P. 2010a. A report on phase 2 of the Fifth International Radiocarbon Intercomparison (VIRI). Radiocarbon 52(3):846–58.Google Scholar
Scott, EM, Cook, GT, Naysmith, P. 2010b. The Fifth International Radiocarbon Intercomparison (VIRI): an assessment of laboratory performance in stage 3. Radiocarbon 52(3):859–65.Google Scholar
Seard, C, Camoin, G, Yokoyama, Y, Matsuzaki, H, Durand, N, Bard, E, Sepulcre, S, Deschamps, P. 2010. Microbialite development patterns in the last deglacial reefs from Tahiti (French Polynesia; IODP Expedition #310): implications on reef framework architecture. Marine Geology 279(1–4):6386.CrossRefGoogle Scholar
Sepulcre, S, Durand, N, Bard, E. 2009. Mineralogical determination of reef and periplatform carbonates: calibration and implications for paleoceanography and radiochronology. Global and Planetary Change 66(1–2):19.Google Scholar
Singarayer, JS, Richards, DA, Ridgwell, A, Valdes, PJ, Austin, WEN, Beck, JW. 2008. An oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas. Geophysical Research Letters 35: L14707, doi::10.1029/2008GL034074.Google Scholar
Spurk, M, Friedrich, M, Hofmann, J, Remmele, S, Frenzel, B, Leuschner, HH, Kromer, B. 1998. Revisions and extension of the Hohenheim oak and pine chronologies: new evidence about the timing of the Younger Dryas/Preboreal transition. Radiocarbon 40(3):1107–16.Google Scholar
St. George, S, Ault, TR, Torbenson, MCA. 2013. The rarity of absent growth rings in Northern Hemisphere forests outside the American Southwest. Geophysical Research Letters 40(14):3727–31.Google Scholar
Staff, RA, Bronk Ramsey, C, Nakagawa, T, Suigetsu 2006 Project Members. 2010. A re-analysis of the Lake Suigetsu terrestrial radiocarbon dataset. Nuclear Instruments and Methods in Physics Research B 268(7–8):960–5.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.Google Scholar
Stuiver, M, Braziunas, TF. 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25(3):329–32.Google Scholar
Stuiver, M, Quay, PD. 1981. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth and Planetary Science Letters 53(3):349–62.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1):215–30.Google Scholar
Stuiver, M, Kromer, B, Becker, B, Ferguson, CW. 1986. Radiocarbon age calibration back to 13,300 years BP and the 14C age matching of the German oak and United States bristlecone pine chronologies. Radiocarbon 28(2B):969–79.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998a. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40(3):1041–83.Google Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998b. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.Google Scholar
Suess, HE. 1970. Bristlecone pine calibration of the radiocarbon time-scale 5200 B.C. to the present. In: Olsson, IU, editor. Proceedings of the Twelfth Nobel Symposium. Radiocarbon Variations and Absolute Chronology. New York: John Wiley and Sons, p 303–11.Google Scholar
Sulerzhitzky, L. 1971. Radiocarbon dating of volcanoes. Bulletin of Volcanology 35(1):8594.Google Scholar
Tennant, RK, Jones, RT, Brock, F, Cook, C, Turney, CSM, Love, J, Lee, R. 2013. A new flow cytometry method enabling rapid purification of fossil pollen from terrestrial sediments for AMS radiocarbon dating. Journal of Quaternary Science 28(3):229–36.Google Scholar
Thomson, J, Cook, GT, Anderson, R, Mackenzie, AB, Harkness, DD, McCave, IN. 1995. Radiocarbon age offsets in different-sized carbonate components of deep-sea sediments. Radiocarbon 37(2):91101.CrossRefGoogle Scholar
Turney, CSM, Coope, GR, Harkness, DD, Lowe, JJ, Walker, MJC. 2000. Implications for the dating of Wisconsinan (Weichselian) late-glacial events of systematic radiocarbon age differences between terrestrial plant macrofossils from a site in SW Ireland. Quaternary Research 53(1):114–21.CrossRefGoogle Scholar
Turney, CSM, Roberts, RG, Jacobs, Z. 2006. Archaeology: progress and pitfalls in radiocarbon dating. Nature 443(7108):E3.Google Scholar
Turney, CSM, Fifield, LK, Hogg, AG, Palmer, JG, Hughen, K, Baillie, MGL, Galbraith, R, Ogden, J, Lorrey, A, Tims, SG, Jones, RT. 2010. The potential of New Zealand kauri (Agathis australis) for testing the synchronicity of abrupt climate change during the Last Glacial Interval (60,000–11,700 years ago). Quaternary Science Reviews 29(27–28):3677–82.Google Scholar
Voelker, AHL, Grootes, PM, Nadeau, M-J, Sarnthein, M. 2000. Radiocarbon levels in the Iceland Sea from 25–53 kyr and their link to the Earth's magnetic field intensity. Radiocarbon 42(3):437–52.Google Scholar
Vogel, JS, Ognibene, T, Palmblad, M, Reimer, P. 2004. Counting statistics and ion interval density in AMS. Radiocarbon 46(3):1103–9.Google Scholar
Wang, X, Auler, AS, Edwards, RL, Cheng, H, Cristalli, PS, Smart, PL, Richards, DA, Shen, C-C. 2004. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432(7018):740–3.CrossRefGoogle ScholarPubMed
Wigley, TML, Briffa, KR, Jones, PD. 1984. On the average of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23(2):201–13.Google Scholar
Wohlfarth, B, Possnert, G. 2000. AMS radiocarbon measurements from the Swedish varved clays. Radiocarbon 42(3):323–33.Google Scholar
Yokoyama, Y, Esat, TM, Lambeck, K, Fifield, LK. 2000. Last ice age millennial scale climate changes recorded in Huon Peninsula corals. Radiocarbon 42(3):383401.Google Scholar
Zolitschka, B. 2003. Dating based on freshwater and marine laminated sediments In: Mackay, A, Battarbee, RW, Birks, J, Oldfield, F, editors. Global Change in the Holocene. London: Edward Arnold Publishers, p 92106.Google Scholar