Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T20:58:28.225Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Bone Osteocalcin: Isolating and Characterizing a Non-Collagen Protein

Published online by Cambridge University Press:  18 July 2016

Henry O. Ajie
Affiliation:
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90024 USA
Isaac R. Kaplan
Affiliation:
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90024 USA
Peter V. Hauschka
Affiliation:
Children's Hospital and Harvard School of Dental Medicine, Boston, Massachusetts 02115 USA
Donna Kirner
Affiliation:
Radiocarbon Laboratory, Department of Anthropology, Institute of Geophysics and Planetary Physics, University of California, Riverside, California 92521 USA
Peter J. Slota Jr.
Affiliation:
Radiocarbon Laboratory, Department of Anthropology, Institute of Geophysics and Planetary Physics, University of California, Riverside, California 92521 USA
R. E. Taylor
Affiliation:
Radiocarbon Laboratory, Department of Anthropology, Institute of Geophysics and Planetary Physics, University of California, Riverside, California 92521 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Osteocalcin, a non-collagen bone-matrix protein, has been examined as a possible source of autochthonous 14C data in fossil bones where collagen has been seriously degraded. Extraction procedures for osteocalcin yield a well-characterized product that can be clearly distinguished from collagen. The Gla content indicates that osteocalcin is present in the fossil bones at levels similar to the range present in modern bone. However, it appears to be extracted primarily as proteolytic polypeptide fragments rather than as an intact protein. Concordant 14C determinations are obtained on osteocalcin and gelatin extracts from the same bone when the collagen is relatively well preserved. However, increasing discordances in the 14C values of the osteocalcin and gelatin fractions are associated with reduced concentrations of the gelatin extract in the bone.

Type
I. Sample Preparation and Measurement Techniques
Copyright
Copyright © The American Journal of Science 

References

Ajie, H. O., Hauschka, P. V., Kaplan, I. R. and Sobel, H. 1991 Comparison of bone collagen and osteocalcin for determination of radiocarbon ages and paleodietary reconstruction. Earth and Planetary Science Letters 107: 380388.CrossRefGoogle Scholar
Ajie, H. O., Kaplan, I. R., Slota, P. J. Jr. and Taylor, R. E. 1990 AMS radiocarbon dating of bone osteocalcin. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the 5th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 433437.CrossRefGoogle Scholar
Berger, R., Chohfi, R., Zegarra, A. V., Yepez, W. and Carrasco, O. F. 1988 Radiocarbon dating Machu Picchu, Peru. Antiquity 62: 707710.CrossRefGoogle Scholar
Brooks, S., Brooks, R. H., Kennedy, G. E., Austin, J., Firby, J. R., Payen, L. A., Prior, C. A., Slota, P. J. Jr. and Taylor, R. E. 1991 The Haverty human skeletons: Morphological, depositional and geochronological characteristics. Journal of California and Great Basin Anthropology 12: 6083.Google Scholar
DeNiro, M. F. and Epstein, S. 1981 Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341351.CrossRefGoogle Scholar
Eaton, G. F. 1916 The collection of osteological materials from Machu Picchu. Connecticut Academy of Arts and Sciences Memoirs 5.Google Scholar
Gundberg, C. M., Hauschka, P. V., Lian, J. B. and Gallop, P. M. 1984 Osteocalcin: Isolation, characterization and detection. Methods in Enzymology 107: 516544.CrossRefGoogle ScholarPubMed
Hauschka, P. V. 1977 Quantitative determination of gamma-carboxyglutamic acid in proteins. Analytical Biochemistry 80: 212223.CrossRefGoogle ScholarPubMed
Hauschka, P. V. 1980 Osteocalcin: A specific protein of bone with potential for fossil dating. In Hare, P. E., Hoering, T. C. and King, K., eds., Biogeochemistry of Amino Acids. New York, Wiley: 7582.Google Scholar
Hauschka, P. V., Carr, S. A. and Biemann, K. 1983 Primary structure of monkey osteocalcin. Biochemistry 21: 638642.CrossRefGoogle Scholar
Hauschka, P. V. and Gallop, P. M. 1977 Purification and calcium-binding properties of osteocalcin, the gamma carboxyglutamate-containing protein of bone. In Wasserman, R. H., Corradino, R. A., Carafoli, E., Kretsinger, R. H., MacLennan, D. H. and Siegel, F. L., eds., Calcium Binding Proteins and Calcium Functions. Amsterdam, Elsevier/North Holland: 338347.Google Scholar
Hauschka, P. V., Lian, J. B., Cole, D. E. C. and Gundberg, C. M. 1989 Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiological Review 69: 9901047.CrossRefGoogle ScholarPubMed
Hauschka, P. V., Lian, J. B. and Gallop, P. M. 1975 Direct identification of the calcium-binding amino acid gamma-carboxyglutamate in mineralized tissue. Proceedings of the National Academy of Science (USA) 72: 39253929.CrossRefGoogle ScholarPubMed
Hauschka, P. V., Lian, J. B. and Gallop, P. M. 1978 Vitamin K and mineralization. Trends in Biochemical Science 3: 7578.CrossRefGoogle Scholar
Hauschka, P. V. and Reid, M. L. 1978 Vitamin K-dependence of a calcium-binding protein containing gamma-carboxyglutamic acid in chicken bone. Journal of Biological Chemistry 253: 90639068.CrossRefGoogle ScholarPubMed
Hedges, R. E. M and Law, I. A. 1989 The radiocarbon dating of bone. Applied Geochemistry 4: 249253.CrossRefGoogle Scholar
Huq, N. L., Tseng, A. and Chapman, G. 1985 Partial amino acid sequence of osteocalcin from an extinct species of Ratite bird. Biochemistry International 21: 491496.Google Scholar
Long, A., Wilson, A. T., Ernst, R. D., Gore, B. H. and Hare, P. E. 1989 AMS radiocarbon dating of bones at Arizona. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 231238.CrossRefGoogle Scholar
Minagawa, M., Winter, D. A. and Kaplan, I. R. 1984 Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Analytical Chemistry 56: 18591861.CrossRefGoogle Scholar
Nishimoto, S. K. and Price, P. A. 1979 Proof that the gamma-carboxyglutamic acid containing bone protein is synthesized in calf bone. Journal of Biological Chemistry 254: 437441.CrossRefGoogle ScholarPubMed
Poser, J. W., Esch, F., Ling, N. C. and Price, P. A. 1980 Isolation and sequence of the vitamin K-dependent protein from human bone. Journal of Biological Chemistry 225: 86858691.CrossRefGoogle Scholar
Price, A. S., Otsuka, J. W., Poser, J. W., Gristaponis, J. and Raman, N. 1976 Characterization of a gamma-carboxyglutamic acid protein from bone. Proceedings of the National Academy of Science 73: 14471451.CrossRefGoogle ScholarPubMed
Schoeninger, M. J. and DeNiro, M. J. 1984 Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48: 625639.CrossRefGoogle Scholar
Stafford, T. W. Jr., Jull, A. J. T., Brendel, K., Duhamel, R. C. and Donahue, D. 1987 Study of bone radiocarbon dating accuracy at the University of Arizona NSF accelerator facility for radioisotope analysis. Radiocarbon 29(1): 2444.CrossRefGoogle Scholar
Stafford, T. W. Jr., Hare, P. E., Currie, L., Jull, A. J. T. and Donahue, D. J. 1990 Accuracy of North American human skeleton ages. Quaternary Research 34: 111120.CrossRefGoogle Scholar
Stafford, T. W. Jr., Hare, P. E., Currie, L., Jull, A. J. T. and Donahue, D. J. 1991 Accelerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18: 3571.CrossRefGoogle Scholar
Taylor, R. E. 1991 Frameworks for dating the Late Pleistocene peopling of the Americas. In Dillehay, T. D. and Meltzer, D. J., eds., The First Americans: Search and Research. Boca Raton, Florida, CRC Press: 77112.Google Scholar
Taylor, R. E. 1992 Radiocarbon dating of bone: To collagen and beyond. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 375402.CrossRefGoogle Scholar
Tuross, N., Fogel, M. L. and Hare, P. E. 1988 Variability in the preservation of the isotopic composition of collagen from fossil bone. Geochimica et Cosmochimica Acta 52: 929935.CrossRefGoogle Scholar
Ulrich, M. M. W., Perizonius, W. R. K., Spoor, C. F., Sandberg, P. and Vermeer, C. 1987 Extraction of osteocalcin from fossil bones and teeth. Biochemical and Biophysical Research Communication 149: 712719.CrossRefGoogle ScholarPubMed