Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T22:12:32.182Z Has data issue: false hasContentIssue false

RADIOCARBON CONCENTRATION IN SUB-ANNUAL TREE RINGS FROM POLAND AROUND 660 BCE

Published online by Cambridge University Press:  29 September 2023

Andrzej Z Rakowski*
Affiliation:
Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
Jacek Pawlyta
Affiliation:
AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland
Hiroko Miyahara
Affiliation:
Humanities and Sciences/Museum Careers, Musashino Art Universally, 1-736 Ogawa-cho, Kodaira, Tokyo, 187-8505, Japan
Marek Krąpiec
Affiliation:
AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland
Mihály Molnár
Affiliation:
Hertelendi Laboratory of Environmental Studies, Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen, Hungary Isotoptech Zrt., H-4025 Debrecen, Hungary
Damian Wiktorowski
Affiliation:
AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland
Masayo Minami
Affiliation:
Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
*
*Corresponding author. Email: arakowski@polsl.pl

Abstract

The article presents results of measurements of radiocarbon (14C) concentration in sub-annual dendrochronologically dated tree rings of English oak (Quercus robur L.) from Grabie village near Kraków (southern Poland). Samples of early wood (EW) and late wood (LW) spanning the years 664–658 BCE. α-cellulose was extracted from each sample and their radiocarbon content was measured at the ATOMKI laboratory in Debrecen, Hungary. The EW and LW data confirm a prolonged increase in Δ14C values around 665–663 as was observed by Park et al. (2017), Rakowski et al. (2019), or Sakurai et al. (2020). In addition, we found that this event may consist of two relatively small events, as was proposed by Sakurai et al. (2020). Based on obtained in this and previous study data we estimate that the occurrence of the two events were between 665 and 664 BCE (Rakowski et al. 2019), and in late spring of 663 BCE (May–June, before beginning of LW formation).

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022.

References

REFERENCES

Becker, B. 1993. An 11,000 year German oak and pine chronology for radiocarbon calibration. Radiocarbon 35, 201213.CrossRefGoogle Scholar
Brehm, N, Christl, M, Adolphi, F, Muscheler, R, Synal, H-A, Mekhaldi, F, Paleari, C, Leuschner, HH, Bayliss, A, Nicolussi, K, et al. 2022. Tree rings reveal two strong solar proton events in 7176 and 5259 BCE. Nature Communications. doi: 10.21203/rs.3.rs-753272/v1.CrossRefGoogle Scholar
Büntgen, U, Wacker, L, Galván, JD, Arnold, S, Arseneault, D, Baillie, M, Beer, J, Bernabei, M, Bleicher, N, Boswijk, G, et al. 2018. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Communications 9(1):3605. doi: 10.1038/s4167-018-06036-0 CrossRefGoogle ScholarPubMed
Ermich, K. 1959. The investigation of the seasonal course of the diameter growth of Pinus silvestris L. and Quercus robur L. Acta Societatis Botanicorum Poloiae 28(1):1563. In Polish.CrossRefGoogle Scholar
Fogtmann-Schulz, A, Ostbo, SM, Nielsen, SGB, Olsen, J, Karoff, C, Knudsen, MF. 2017. Cosmic ray event in 994 CE recorded in radiocarbon from Danish oak. Geophysical Research Letters 44(16):86218628.CrossRefGoogle Scholar
Güttler, D, Adolphi, F, Beer, J, Bleicher, N, Boswijk, G, Christl, M, Hogg, A, Palmer, j, Vockenhuber, C, Wacker, L, Wunder, J. 2015. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth and Planetary Science Letters 411:290297.CrossRefGoogle Scholar
Güttler, D, Beer, J, Bleicher, N, Boswijk, G, Hogg, AG, Palmer, JG, Vockenhuber, C, Wacker, L, Wunder, J. 2015. Worldwide detection of a rapid increase of cosmogenic 14C in AD 775. Poster presented at the Nuclear Physics in Astrophysics.Google Scholar
Hakozaki, M, Miyake, F, Nakamura, T, Kimura, K, Masuda, K, Okuno, M. 2018. Verification of the annual dating of the 10th century Baitoushan volcano eruption based on an AD 774–775 radiocarbon spike. Radiocarbon 60(1):261268.CrossRefGoogle Scholar
Hogg, AG, Heaton, TJ, Hua, Q, Palmer, JG, Turney, CSM, Wacker, L. 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62(4):759778. doi: 10.1017/RDC.2020.59 CrossRefGoogle Scholar
Holmes, RL. 1999. User’s Manual for Program COFECHA. Tucson (AZ): University of Arizona.Google Scholar
Janovics, R, Futó, I, Molnár, M. 2018. Sealed tube combustion method with MnO2 for AMS 14C measurement. Radiocarbon 60(5):13471355.CrossRefGoogle Scholar
Jull, AJT, Panyushkina, IP, Lange, TE, Kukarskih, VV, Myglan, VS, Clark, KJ, Salzer, MW, Burr, GS, Leavitt, SW. 2014. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophysical Research Letters 41(8):30043010.CrossRefGoogle Scholar
Jull, AJT, Panyushkina, I, Miyake, F, Masuda, K, Nakamura, T, Mitsutani, T, Lange, TE, Cruz, R, Baisan, C, Janovics, R, et al. 2018. More rapid 14C excursions in the tree-ring record: a record of different kind of solar activity at about 800 BC? Radiocarbon 60(4):12371248.CrossRefGoogle Scholar
Kanzawa, K, Miyake, F, Horiuchi, K, Sasa, K, Takano, K, Matsumura, M, et al. 2021. High-resolution 10Be and 36Cl data from the Antarctic Dome Fuji ice core (∼100 years around 5480 BCE): an unusual grand solar minimum occurrence? Journal of Geophysical Research: Space Physics 126:e2021JA029378. doi: 10.1029/2021JA029378 CrossRefGoogle Scholar
Kovaltsov, GA, Mishev, A, Usoskin, IG. 2012. A new model of cosmic production of radiocarbon 14C in the atmosphere. Earth and Planetary Sciences Letters 337–338:114120.CrossRefGoogle Scholar
Krąpiec, M. 2001. Holocene dendrochronological standards for subfossil oaks from the area of Southern Poland. Studia Quaternaria 18:4763.Google Scholar
Krąpiec, M, Rakowski, AZ, Pawlyta, J, Wiktorowski, D, Bolka, M. 2020. Absolute dendrochronological scale for pine (Pinus sylvestris L.) from Ujscie (NW Poland), dated using rapid atmospheric 14C changes. Radiocarbon. doi: 10.1017/RDC.2020.116 CrossRefGoogle Scholar
Krawczyk, A, Krąpiec, M. 1995. Dendrochronologiczna baza danych. Materiały II Krajowej Konferencji: Komputerowe wspomaganie badań naukowych (Dendrochronological database. Proceedings of the Second Polish Conference on Computer Assistance to Scientific Research). Wrocław: 247–252. In Polish.Google Scholar
Kuitems, M, Wallace, BL, Lindsay, C. et al. 2022. Evidence for European presence in the Americas in ad 1021. Nature 601:388391. doi: 10.1038/s41586-021-03972-8 CrossRefGoogle ScholarPubMed
Leuschner, H-H, Delorme, A. 1988. Tree-ring work in Göttingen: absolute oak chronologies back to 6255 BC. PACT 22:123132.Google Scholar
Mekhaldi, F, Muscheler, R, Adolphi, F, Aldahan, A, Beer, J, McConnell, JR, Possnert, G, Sigl, M, Svensson, A, Synal, H-A, et al. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6:8611.CrossRefGoogle ScholarPubMed
Michczyńska, DJ, Krąpiec, M, Michczyński, A, Pawlyta, J, Goslar, T, Nawrocka, N, Piotrowska, N, Szychowska-Krąpiec, E, Waliszewska, B, Zborowska, M. 2018. Different pretreatment methods for 14C dating of Younger Dryas and Allerød pine wood (Pinus sylvestris L.). Quaternary Geochronology 48:3844.CrossRefGoogle Scholar
Miyahara, H, Tokanai, F, Moriya, T, Takeyama, M, Sakurai, H, Ohyama, M, Horuchi, K, Hotta, H. 2022. Recurrent large-scale solar proton events before the onset of the Wolf Grand Solar Minimum. Geophysical Research Letters 49. doi: 10.1029/2021GL097201 CrossRefGoogle Scholar
Miyake, F, Jull, AJT, Panyushkina, IP, Wacker, L, Salzer, M, Baisan, CH, Lange, T, Cruz, R, Masuda, K, Nakamura, T. 2017. Large 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proceedings of the National Academy of Sciences of the United States of America 114(5):881884. doi: 10.1073/pnas.1613144114.CrossRefGoogle Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748. doi: 10.1038/ncomms2873.CrossRefGoogle ScholarPubMed
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increases in AD 774–775 from tree rings in Japan. Nature 486(7402):240242.CrossRefGoogle ScholarPubMed
Miyake, F, Masuda, K, Hakozaki, M, Nakamura, T, Tokanai, F, Kato, K, Kimura, K, Mitsutani, T. 2014. Verification of the cosmic-ray event in AD 993–994 by using a Japanese Hinoki tree. Radiocarbon 56(3):11841194.CrossRefGoogle Scholar
Molnar, M, Rinyu, L, Veres, M, Seiler, M, Wacker, L, Synal, H-A. 2016. EnvironMICADAS: A Mini 14C AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55(2):338344.CrossRefGoogle Scholar
Nemec, M, Wacker, L, Hajdas, I, Gaggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(2):13581370.CrossRefGoogle Scholar
O’Hare, P, Mekhaldi, F, Adolphi, F, Reisbeck, G, Aldahan, A, Anderberg, E, Beer, J, Christl, M, Fahrni, S, Synal, H-A, et al. 2019. Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (∼660 BC). Proceedings of the National Academy of Sciences of the United States of America PNAS 116;(13):59615966. doi: 10.1073/pnas.1815725116.CrossRefGoogle ScholarPubMed
Olsson, IU, Possnert, G. 1992. 14C activity in different sections and chemical fractions of oak tree rings, A.D. 1938–1981. Radiocarbon 34(3):757767.CrossRefGoogle Scholar
Oppenheimer, C, Wacker, L, Xu, J, Galván, JD, Stoffel, M, Guillet, S, Corona, C, Sigl, M, Cosmo, ND, Hajdas, I, et al. 2017. Multi-proxy dating the “Millennium Eruption” of Changbaishan to late 946 CE. Quaternary Science Reviews 158:164171.CrossRefGoogle Scholar
Paleari, CI, Mekhaldi, F, Adolphi, F, Christl, M, Vockenhuber, C, Gautschi, P, Beer, J, Brehm, N, Erhardt, T, Synal, HA, et al. 2022. Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP. Nat Commun 11; (13 1):214. doi: 10.1038/s41467-021-27891-4. PMID: 35017519; PMCID: PMC8752676.CrossRefGoogle Scholar
Park, J, Southon, J, Fahrni, S, Creasman, PP, Mewaldt, R. 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59(4):11471156.CrossRefGoogle Scholar
Pavlov, A, Blinov, AV, Konstantinov, AN, Ostryakov, VN, Vasilyev, GI, Vdovina, MA, Volkov, PA. 2013. AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst. Mon. Not. R. Astron. Soc. 435(4):28782884.CrossRefGoogle Scholar
Philipsen, B, Feveile, C, Olsen, J, Sindbaek, SM. 2022. Single-year radiocarbon dating anchors Viking Age trade cycles in time. Nature 601. doi: 10.1038/s41586-021-04240-5 CrossRefGoogle Scholar
Possnert, G, Southon, J, Bard, E, ASTER, Team, Muschler, R. 2019. Multinuclide evidence for an extreme solar proton event around 2,610 B.P. (∼660 BC). PNAS 116(13):59615966. doi: 10.1038/s41598-019-57273-2 Google Scholar
Rakowski, AZ, Krąpiec, M, Huels, M, Pawlyta, J, Boudin, M. 2018. Increase in radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 993–994. Radiocarbon 60(4):12491258. doi: 10.101/rdc.2018.74 CrossRefGoogle Scholar
Rakowski, AZ, Krąpiec, M, Huels, M, Pawlyta, J, Dreves, A, Meadows, J. 2015. Increase of radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 774–775. Nuclear Instruments and Methods in Physics Research B 351:564568.CrossRefGoogle Scholar
Rakowski, AZ, Krąpiec, M, Huels, M, Pawlyta, J, Hamann, Ch, Wiktorowski, D. 2019. Abdupt increase of radiocarbon concentration in 660 BC in the tree rings from Grabie near Karkow (SE Poland). Radiocarbon 61(5):13271335.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757. doi: 10.1017/RDC.2020.41 CrossRefGoogle Scholar
Rinn, F. 2005. TSAP-Win. Time series analysis and presentation for dendrochronology and related applications. User reference. Heidelberg.Google Scholar
Rinyu, L, Molnár, M, Major, I, Nagy, T, Veres, M, Kimák, Á, Wacker, L, Synal, H-A. 2013. Optimization of sealed tube graphitization method for environmental 14C studies using MICADAS. Nuclear Instruments and Methods in Physics Research B 294:270275.CrossRefGoogle Scholar
Sakurai, H, Tokanai, F, Miyake, F, Horiuchi, K, Masuda, K, Miyahara, H, Ohyama, M, Sakamoto, M, Mitsurani, T, Moriya, T. 2020. Prolonged production of 14C during the ∼660 BCE solar proton event from Japanese tree rings. Scientific Reports Nature 10:660 doi: 10.1038/s41598-019-57273-2 CrossRefGoogle ScholarPubMed
Santos, GM, Bird, MI, Pillans, B, Fifield, LK, Alloway, BV, Chappell, J, Hausladen, PA, Arneth, A. 2001. Radiocarbon dating of wood using different pretreatment procedures: application to the chronology of Rotoehu Ash, New Zealand. Radiocarbon 43(2A):239248.CrossRefGoogle Scholar
Speer, JH. 2010. Fundamentals of tree-ring research. Tucson (AZ): Univ. of Arizona Press. 368 p.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355363.CrossRefGoogle Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.CrossRefGoogle Scholar
Tarrasi, F, Marzaioli, F, Bouompane, R, Passariello, I, Capano, M, Helama, S, Oinonen, M, Nojd, P, Uusitalo, J, Jull, AJT, et al. 2020 Can the 14C production in 1055 CE be affected by SN1054? Radiocarbon 62(5):14031418. doi: 10.1017/RDC.2020.58 CrossRefGoogle Scholar
Usoskin, IG, Kovaltsov, GA. 2012. Occurrence of extreme solar particle events: assessment from historical proxy data. The Astrophysical Journal 757:92.CrossRefGoogle Scholar
Usoskin, IG, Kromer, B, Ludlow, F, Beer, J, Friedrich, M, Kovaltsov, GA, Solanki, S, Wacker, L. 2013. The AD775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 55:L3. doi: 10.1051/0004-6361/201321080.CrossRefGoogle Scholar
van der Plicht, J. 2007. Radiocarbon dating/variations in atmospheric 14C. In: Holloway R, Elias SA, editors. Encyclopedia of Quaternary Science. Elsevier. p. 2923–2931.Google Scholar
Wacker, L, Christl, M, Synal, H-A. 2010. BATS: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976979.CrossRefGoogle Scholar
Wacker, L, Guttler, D, Goll, J, Hurni, J, Synal, H-A, Walti, N. 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56(2):573579. doi: 10.2458/56.17634.CrossRefGoogle Scholar
Supplementary material: File

Rakowski et al. supplementary material

Rakowski et al. supplementary material

Download Rakowski et al. supplementary material(File)
File 268.8 KB