Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T18:54:52.269Z Has data issue: false hasContentIssue false

PRETREATMENT PROTOCOLS PERFORMED AT THE ROYAL INSTITUTE FOR CULTURAL HERITAGE (RICH) PRIOR TO AMS 14C MEASUREMENTS

Published online by Cambridge University Press:  27 July 2020

Marine Wojcieszak*
Affiliation:
Royal Institute for Cultural Heritage (RICH), Brussels, Belgium Evolutionary Studies Institute (ESI), University of the Witwatersrand, Johannesburg, South Africa
Tess Van den Brande
Affiliation:
Royal Institute for Cultural Heritage (RICH), Brussels, Belgium
Gaia Ligovich
Affiliation:
Royal Institute for Cultural Heritage (RICH), Brussels, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage (RICH), Brussels, Belgium
*
*Corresponding author. Email: marine.wojcieszak@gmail.com.

Abstract

The Royal Institute for Cultural Heritage (RICH) radiocarbon (14C) laboratory in Brussels, Belgium, has acquired experience for pretreating samples with 60 years of involvement in 14C dating, and the implementation of routine protocols. These procedures as applied to wood, seeds, charred materials, bones, ivory, textiles (silk, wool, cotton, linen), paper, shells, cremated bones, mortars, lead carbonates, sediments, etc. are described in detail in this paper. They are evaluated against reference materials.

Type
Technical Note
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17(4):431451.CrossRefGoogle Scholar
Arslanov, KA, Svezhentsev, YS. 1993. An improved method for radiocarbon dating fossil bones. Radiocarbon 35(3):387391.CrossRefGoogle Scholar
Beck, L, Caffy, I, Delqué-Količ, E, et al. 2018. Absolute dating of lead carbonates in ancient cosmetics by radiocarbon. Communications Chemistry 1(1):34.CrossRefGoogle Scholar
Beck, L, Messager, C, Coelho, S, et al. 2019. Thermal decomposition of lead white for radiocarbon dating of paintings. Radiocarbon 61(5):13451356.CrossRefGoogle Scholar
Benfer, RA, Typpo, JT, Graf, VB, Pickett, EE. 1978. Mineral analysis of ancient Peruvian hair. American Journal of Physical Anthropology 48(3):277282.CrossRefGoogle ScholarPubMed
Bonneau, A, Staff, RA, Higham, T, Brock, F, Pearce, DG, Mitchell, PJ. 2017. Successfully dating rock art in southern Africa using improved sampling methods and new characterization and pretreatment protocols. Radiocarbon 59(3):659677.CrossRefGoogle Scholar
Boudin, M, Boeckx, P, Vandenabeele, P, Van Strydonck, M. 2013. Improved radiocarbon dating for contaminated archaeological bone collagen, silk, wool and hair samples via cross-flow nanofiltrated amino acids. Rapid Communications in Mass Spectrometry 27(18):20392050.CrossRefGoogle ScholarPubMed
Boudin, M, Boeckx, P, Vandenabeele, P, Van Strydonck, M. 2014. An archaeological mystery revealed by radiocarbon dating of cross-flow nanofiltrated amino acids derived from bone collagen, silk, and hair: case study of the bishops Baldwin I and Radbot II from Noyon-Tournai. Radiocarbon 56(2):603617.CrossRefGoogle Scholar
Boudin, M, Bonafini, M, Berghe, IV, Maquoi, M-C. 2016. Naturally dyed wool and silk and their atomic C: N ratio for quality control of 14C sample treatment. Radiocarbon 58(1):5568.CrossRefGoogle Scholar
Boudin, M, Bonafini, M, Van den Brande, T, Berghe, IV. 2017. Cross-flow nanofiltration of contaminated protein-containing material: State of the art. Radiocarbon 59(6):17931807.CrossRefGoogle Scholar
Boudin, M, Bonafini, M, Van Den Brande, T, Van Strydonck, M. 2019. AGE: A new graphitization apparatus for the 14C-dating laboratory. Bulletin Koninklijk Instituut Voor Kunstpatrimonium 35:197201.Google Scholar
Boudin, M, Van Strydonck, M, van den Brande, T, Synal, H-A, Wacker, L. 2015. RICH—a new AMS facility at the Royal Institute for Cultural Heritage, Brussels, Belgium. Nuclear Instruments and Methods in Physics Research B 361:120123.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Ramsey, CB. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.CrossRefGoogle Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.CrossRefGoogle Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806.CrossRefGoogle Scholar
Douka, K, Hedges, RE, Higham, TF. 2010a. Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction and a novel density separation protocol (CarDS). Radiocarbon 52(2):735751.CrossRefGoogle Scholar
Douka, K, Higham, TF, Hedges, RE. 2010b. Radiocarbon dating of shell carbonates: old problems and new solutions. Munibe Suplemento 31:1827.Google Scholar
Goodfriend, GA, Stipp, JJ. 1983. Limestone and the problem of radiocarbon dating of land-snail shell carbonate. Geology 11(10):575577.2.0.CO;2>CrossRefGoogle Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, et al. 2017. Mortar dating methodology: Assessing recurrent issues and needs for further research. Radiocarbon 59(6):18591871.CrossRefGoogle Scholar
Hüls, CM, Grootes, PM, Nadeau, MJ. 2009. Ultrafiltration: Boon or bane? Radiocarbon 51(2):613625.CrossRefGoogle Scholar
Hüls, MC, Grootes, PM, Nadeau, M-J. 2007. How clean is ultrafiltration cleaning of bone collagen? Radiocarbon 49(2):193200.CrossRefGoogle Scholar
Kuzmin, YV, Fiedel, SJ, Street, M, et al. 2018. A laboratory inter-comparison of AMS 14C dating of bones of the Miesenheim IV elk (Rhineland, Germany) and its implications for the date of the Laacher See eruption. Quaternary Geochronology 48:716.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241.CrossRefGoogle ScholarPubMed
Lull, V, Micó, R, Rihuete-Herrada, C, Risch, R, Van Strydonck, M, Boudin, M. 2016. Multiple radiocarbon dating of a single skeleton: Assessing issues of precision and accuracy in the Argaric Bronze Age. In: Barceló JA, Bogdanovic I, Morell B, editors. IberCrono, CEUR Workshop Proceedings. p. 163–171.Google Scholar
Major, I, Dani, J, Kiss, V, et al. 2019. Adoption and evaluation of a sample pretreatment protocol for radiocarbon dating of cremated bones at HEKAL. Radiocarbon 61(1):159171.CrossRefGoogle Scholar
Mangerud, J. 1972. Radiocarbon dating of marine shells, including a discussion of apparent age of recent shells from Norway. Boreas 1(2):143172.CrossRefGoogle Scholar
Naysmith, P, Scott, EM, Cook, GT, Heinemeier, J, van der Plicht, J, Van Strydonck, M, Bronk Ramsey, C, Grootes, PM, Freeman, SPHT. 2007. A cremated bone intercomparison study. Radiocarbon 49(2):403408.CrossRefGoogle Scholar
Nemec, M, Wacker, L, Gaggeler, H. 2010. Optimization of the graphitization process at AGE-1. Radiocarbon 52(3):13801393.CrossRefGoogle Scholar
Olson, EA, Broecker, WS. 1958. Sample contamination and reliability of radiocarbon dates. Transactions of the New York Academy of Science. Vol. 20. p. 593604.CrossRefGoogle Scholar
Ramsey, CB, Higham, T, Bowles, A, Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163.CrossRefGoogle Scholar
Rose, HA, Meadows, J, Palstra, SW, Hamann, C, Boudin, M, Huels, M. 2019. Radiocarbon dating cremated bones: A case study comparing laboratory methods. Radiocarbon 61(5):15811591.CrossRefGoogle Scholar
Santos, GM, Ormsby, K. 2013. Behavioral variability in ABA chemical pretreatment close to the 14C age limit. Radiocarbon 55(2):534544.CrossRefGoogle Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research 259(1):713.CrossRefGoogle Scholar
Tripp, JA, Higham, TFG, Hedges, REM. 2004. A pretreatment procedure for the AMS radiocarbon dating of sub-fossil insect remains. Radiocarbon 46(1):147154.CrossRefGoogle Scholar
Van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687695.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2009. 14C dating of cremated bones: The issue of sample contamination. Radiocarbon 51(2):553568.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2):578586.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, Decq, L, van den Brande, T, Borms, H, Ramis, D, De Mulder, G. 2011. AMS 14C dating of Balearic lime burials. Radiocarbon 53(4):563574.CrossRefGoogle Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, C, Maréchal, J. 1982. A further step in the radiocarbon dating of old mortars. Bulletin van Het Koninklijk Instituut Voor Het Kunstpatrimonium 19:155171.Google Scholar
Van Strydonck, M, Hayen, R, Boudin, M, van den Brande, T, Salas Burguera, M, Ramis, D, Borms, H, De Mulder, G. 2015. 14C dating of the lime burial of Cova de Na Dent (Mallorca, Spain): Optimization of the sample preparation and limitations of the method. Radiocarbon 57(1):161171.CrossRefGoogle Scholar
Van Strydonck, M, Van der Borg, K. 1990. The construction of a preparation line for AMS-targets at the royal Institute for Cultural Heritage, Brussels. Bulletin Koninklijk Instituut Voor Kunstpatrimonium 23:228234.Google Scholar
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitization system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7):931934.CrossRefGoogle Scholar
Zazzo, A, Saliège, J-F. 2011. Radiocarbon dating of biological apatites: A review. Palaeogeography, Palaeoclimatology, Palaeoecology 310(1–2):5261.CrossRefGoogle Scholar