Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T16:24:24.230Z Has data issue: false hasContentIssue false

Natural Climate Variability During the Holocene

Published online by Cambridge University Press:  18 July 2016

V A Dergachev*
Affiliation:
Ioffe Physico-Technical Institute, St. Petersburg, Russia
O M Raspopov
Affiliation:
St. Petersburg Branch of IZMIRAN, St. Petersburg, Russia
F Damblon
Affiliation:
Royal Institute of Natural Science, Brussels, Belgium
H Jungner
Affiliation:
University of Helsinki, Finland
G I Zaitseva
Affiliation:
The Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
*
Corresponding author: Email: v.dergachev@mail.ioffe.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-precision radiocarbon age calibration for different terrestrial samples allows us to establish accurate boundaries for many climatic time series. At the same time, the fluctuations of 14C content reflect solar variability. A bispectrum analysis of long-term series of the 14C content deduced from decadal measurements in tree rings demonstrates the existence of amplitude modulation, with a period of main modulation of ∼2400 yr. In 14C time series for the last 11 kyr, major oscillations are distinguished at 8.5–7.8, 5.4–4.7, 2.6–2.2, and 1.1–0.4 cal kyr BP with ∼2400-yr periodicity. High amplitudes in cosmogenic isotope content with a periodicity of about 2400 yr appear synchronous to cooling events documented in Greenland ice cores, to the timing of worldwide Holocene glacier expansion, and to the periods of lake-level changes. This paper focuses on revealing solar forcing on the Earth's climate and about the nature, significance, and impact of sharp Holocene climate variability on human societies and civilizations.

Type
Articles
Copyright
Copyright © 2007 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Alley, RB, Mayewski, PA, Sowers, T, Stuiver, M, Taylor, KC, Clark, PU. 1997. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25(6):483–6.Google Scholar
Amman, CM. 2005. Solar signal in records and simulations of past climates. Memorie della Societa Astronomica Italiana 76(4):802–4.Google Scholar
Baldini, JUL, McDermott, F, Fairchild, IJ. 2002. Structure of the 8200-year cold event revealed by a speleothem trace element record. Science 296(5576):2203–6.Google Scholar
Bond, G, Kromer, B, Beer, J, Muscheler, R, Evans, MN, Showers, W, Hoffmann, S, Lotti-Bond, R, Hajdas, I, Bonani, G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294(5549):2130–6.Google Scholar
Burns, SJ, Matter, A, Frank, N, Mangini, A. 1998. Speleothem-based paleoclimate record from northern Oman. Geology 26(6):499502.Google Scholar
Caseldine, C, Thompson, G, Langdon, C, Hendon, D. 2005. Evidence for an extreme climatic event on Achill Island, Co. Mayo, Ireland around 5200–5100 cal yr BP. Journal of Quaternary Science 20(2):169–78.Google Scholar
Cook, ER, Woodhouse, CA, Eakin, CM, Meko, DM, Stahle, DW. 2004. Long-term aridity changes in the western United States. Science 306(5698):1015–8.CrossRefGoogle ScholarPubMed
Denton, GH, Karlén, W. 1973. Holocene climatic variations—their pattern and possible cause. Quaternary Research 3(2):155–74.Google Scholar
Dergachev, VA, Raspopov, OM, van Geel, B, Zaitseva, GI. 2004. The ‘Sterno-Etrussia’ geomagnetic excursion around 2700 BP and changes of solar activity, cosmic ray intensity, and climate. Radiocarbon 46(2):661–81.Google Scholar
Eddy, JA. 1976. The Maunder minimum. Science 192(4245):1189–202.Google Scholar
Ellison, CRW, Chapman, MR, Hall, IR. 2006. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312(5782):1929–32.Google Scholar
Esper, J, Wilson, RJS, Frank, DC, Moberg, A, Wanner, H, Luterbacher, J. 2005. Climate: past ranges and future changes. Quaternary Science Reviews 24(20–21):2164–6.Google Scholar
Finkel, RC, Nishizumi, K. 1997. Berillium-10 contents in the Greenland Ice Sheet Project 2 ice core from 3–40 ka. Journal of Geophysical Research 102(C12):26,699706.CrossRefGoogle Scholar
Fleitmann, D, Burns, SJ, Mudelsee, M, Neff, U, Kramers, J, Mangini, A, Matter, A. 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300(5626):1737–9.Google Scholar
Friis-Christensen, E, Lassen, K. 1991. Length of the solar cycle: an indicator of solar activity closely associated with climate. Science 254(5032):698700.Google Scholar
Fröhlich, C. 2000. Observations of irradiance variations. Space Science Reviews 94(1–2):1524.Google Scholar
Gasse, F. 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19(1–5):189211.CrossRefGoogle Scholar
Gasse, F. 2005. Continental palaeohydrology and palaeoclimate during the Holocene. Comptes Rendus Geoscience 337(1–2):7986.CrossRefGoogle Scholar
Grove, JM. 2002. Climatic change in northern Europe over the last two thousand years and its possible influence on human activity. In: Wefer, G, Berger, W, Behre, K-E, Jansen, E, editors. Climate Development and History of the North Atlantic Realm. Berlin: Springer-Verlag. p 313–26.Google Scholar
Gupta, AK, Anderson, DM, Overpeck, JT. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421(6921):354–7.Google Scholar
Harrison, RG, Stephenson, DB. 2005. Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proceedings of the Royal Society of London A 462(2068):1221–33.Google Scholar
Haug, GH, Hughen, KA, Sigman, DM, Peterson, LC, Röhl, U. 2001. Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293(5533):1304–8.Google Scholar
Haug, GH, Günther, D, Peterson, LC, Sigman, DM, Hughen, KA, Aeschlimann, B. 2003. Climate and the collapse of Maya civilization. Science 299(5613):1731–5.Google Scholar
Hodell, DA, Curtis, JH, Brenner, M. 1995. Possible role of climate in the collapse of Classic Maya civilization. Nature 375(6530):391–4.Google Scholar
Hodell, DA, Brenner, M, Curtis, JH. 2005. Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quaternary Science Reviews 24(12–13):1413–27.Google Scholar
Holzhauser, H, Magny, M, Zumbuühl, HJ. 2005. Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15(6):789801.Google Scholar
Hormes, A, Müller, BU, Schlüchter, C. 2001. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene 11(3):255–65.CrossRefGoogle Scholar
Knox, JC. 1999. Sensitivity of modern and Holocene floods to climate change. Quaternary Science Reviews 19(1–5):439–57.Google Scholar
Kutschera, W, Müller, W. 2003. “Isotope language” of the Alpine Iceman investigated with AMS and MS. Nuclear Instruments and Methods in Physics Research B 204:705–19.Google Scholar
Lamb, HH. 1995. Climate, History and the Modern World. London: Routledge. 464 p.Google Scholar
Le Roy Ladurie, E. 1967. Histoire du climat depuis l'an mil. Paris: Flammarion. 287 p. In French.Google Scholar
Li, Z, Saito, Y, Matsumoto, E, Wang, Y, Tanabe, S, Vu, QL. 2006. Climate change and human impact on the Song Hong (Red River) Delta, Vietnam, during the Holocene. Quaternary International 144(1):428.Google Scholar
Maasch, KA, Mayewski, PA, Rohling, EJ, Stager, JC, Karlén, W, Meeker, LD, Meyerson, EA. 2005. A 2000-year context for modern climate change. Geografiska Annaler A 87(1):715.Google Scholar
Magny, M. 2004. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113(1):6579.Google Scholar
Magny, M, Leuzinger, U, Bortenschlager, S, Haas, JN. 2006. Tripartite climate reversal in Central Europe 5600–5300 years ago. Quaternary Research 65(1):319.Google Scholar
Maise, C. 1998. Archäoklimatologie - Vom Einfluss nacheiszeitlicher Klimavariabilität in der Ur- und Frúhgeschichte. Jahrbuch der Schweizerischen Gesellschaft für Ur- und Frúhgeschichte 81:197235. In German.Google Scholar
Mann, ME, Bradley, RS, Hughes, MK. 1999. Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophysical Research Letters 26(6):759–62.Google Scholar
Mayewski, PA, Meeker, LD, Twickler, MS, Whitlow, S, Yang, Q, Lyons, WB, Prentice, M. 1997. Major features and forcing of high-latitude Northern Hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. Journal of Geophysical Research 102(C12):26,34566.Google Scholar
Mayewski, PA, Rohling, EE, Stager, JC, Karlén, W, Maasch, KA, Meeker, LD, Meyerson, EA, Gasse, F, van Kreveld, S, Holmgren, K, Lee-Thorp, J, Rosqvist, G, Rack, F, Staubwasser, M, Schneider, RR, Steig, EJ. 2004. Holocene climate variability. Quaternary Research 62(3):243–55.Google Scholar
Neff, U, Burns, SJ, Mangini, A, Mudelsee, M, Fleitmann, D, Matter, A. 2001. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411(6835):290–3.Google Scholar
Noren, AJ, Bierman, PR, Steig, EJ, Lini, A, Southon, J. 2002. Millennial-scale storminess variability in the northeastern United States during the Holocene epoch. Nature 419(6909):821–4.CrossRefGoogle ScholarPubMed
O'Brien, SR, Mayewski, PA, Meeker, LD, Meese, DA, Twickler, MS, Whitlow, SI. 1995. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270(5244):1962–4.Google Scholar
Peterson, LC, Haug, GH. 2005. Climate and the collapse of Maya civilization. American Scientist 93(4):322–9.Google Scholar
Raspopov, OM, Dergachev, VA, Kuzmin, AV, Kozyreva, OV, Ogurtsov, MG, Kolström, T, Lopatin, E. 2007. Regional tropospheric responses to long-term solar activity variations. Advances in Space Research. doi: 10.1016/j.asr.2007.01.081.Google Scholar
Reid, GC. 1987. Influence of solar variability on global sea surface temperatures. Nature 329(6135):142–3.CrossRefGoogle Scholar
Renssen, H, Goosse, H, Fichefet, T, Campin, J-M. 2001. The 8.2 kyr BP event simulated by a global atmosphere–sea-ice–ocean model. Geophysical Research Letters 28(8):1567–70.Google Scholar
Rind, D, Lean, J, Healy, R. 1999. Simulated time-dependent climate response to solar radiative forcing since 1600. Journal of Geophysical Research 104(D2):1973–90.Google Scholar
Ristvet, L. 2003. Agriculture, settlement, and abrupt climate change: the 4.2ka BP event in northern Mesopotamia. Eos, Transactions AGU 84(46). Fall Meeting Supplement, Abstract. F 885.Google Scholar
Rohling, EJ, Pälike, H. 2005. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434(7036):975–9.Google Scholar
Solanki, SK, Fligge, M. 1999. A reconstruction of total solar irradiance since 1700. Geophysical Research Letters 26(16):2465–8.Google Scholar
Stager, JC, Ryves, BF, Cumming, BF, Meeker, LD, Beer, J. 2005. Solar variability and the levels of Lake Victoria, east Africa, during the last millennium. Journal of Paleolimnology 33(2):243–51.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.Google Scholar
Svensmark, H, Friis-Christensen, E. 1997. Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics 59(11):1225–32.Google Scholar
Svensmark, H, Pedersen, JOP, Marsh, ND, Enghoff, MB, Uggerhøj, UI. 2007. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proceedings of the Royal Society A 463 (2078):385–96.Google Scholar
Thompson, LG, Mosley-Thompson, E, Brecher, H, Davis, M, León, B, Les, D, Lin, P-N, Mashiotta, T, Mountain, K. 2006. Abrupt tropical climate change: past and present. Proceedings of the National Academy of Sciences USA 103(28):10,53643.Google Scholar
van Geel, B, Raspopov, OM, Renssen, H, van der Plicht, J, Dergachev, VA, Meijer, HAJ. 1999. The role of solar forcing upon climate change. Quaternary Science Reviews 18(3):331–8.Google Scholar
van Geel, B, Bokovenko, NA, Burova, ND, Chugunov, KV, Dergachev, VA, Dirksen, VG, Kulkova, M, Nagler, A, Parzinger, H, van der Plicht, J, Vasiliev, SS, Zaitseva, GI. 2004. Climate change and expansion of the Scythian culture after 850 BC: a hypothesis. Journal of Archaeological Science 31(12):1735–42.Google Scholar
Vasiliev, SS, Dergachev, VA. 2002. The ∼2400-year cycle in atmospheric radiocarbon content: bispectrum of 14C data over the last 8000 years. Annales Geophysicae 20(1):115–20.Google Scholar
Verschuren, D, Laird, KR, Cumming, BF. 2000. Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature 403(6768):410–3.Google Scholar
Weber, SL, Crowley, TJ, van der Schrier, G. 2004. Solar irradiance forcing of centennial climate variability during the Holocene. Climate Dynamics 22(5):539–53.Google Scholar
Wendland, WM, Bryson, RA. 1974. Dating climatic episodes of the Holocene. Quaternary Research 4(1):914.Google Scholar