Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T19:52:33.677Z Has data issue: false hasContentIssue false

THE MIYAKE EVENT IN 993 CE RECORDED IN OAK SUB-ANNUAL TREE RINGS FROM KUJAWY (POLAND)

Published online by Cambridge University Press:  28 July 2022

Andrzej Rakowski*
Affiliation:
Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
Marek Krąpiec
Affiliation:
AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland
Matthias Huels
Affiliation:
Leibniz-Laboratory for Radiometric Dating and Isotope Research, University Kiel, Max-Eyth-Str. 11-13, 24118 Kiel, Germany
Jacek Pawlyta
Affiliation:
AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland
Damian Wiktorowski
Affiliation:
AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland
*
*Corresponding author. Email: arakowski@polsl.pl

Abstract

This article presents measurements of the radiocarbon (14C) concentration in sub-annual tree rings. Samples of earlywood (EW) and latewood (LW) from dendrochronologically dated tree rings (English oak, Quercus robur) from Kujawy, near Kraków (Poland), spanning the years of 990–997 CE, are extracted and their 14C content is measured at the Center for Applied Isotope Studies at the University of Georgia, USA. The EW and LW data show a gradual increase in the Δ14C values between 991–995 CE, which are similar to those observed by Rakowski et al. (2018). An increase of 10.3 ± 2.6‰ in Δ14C for the EW data, and 8.6 ± 2.6‰ for the LW data has been recorded for this period. Using this data, it is possible to estimate the time period for when a major historical event occurred, which seems to have been in the late summer (September –2/+1 month) of 993 CE.

Type
Conference Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 3rd Radiocarbon in the Environment Conference, Gliwice, Poland, 5–9 July 2021

References

REFERENCES

Büntgen U, Wacker, L, Galván, JD, Arnold, S, Arseneault, D, Baillie, M, Beer, J, Bernabei, M, Bleicher, N, Boswijk, G, et al. 2018. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Communications 9(1):3605. doi: 10.1038/s4167-018-06036-0.Google Scholar
Castagnoli, G, Lal, D. 1980. Solar modulation effects in terrestrial production of carbón-14. Radiocarbon 22:133–158.CrossRefGoogle Scholar
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nuclear Instruments and Methods in Physics Research B 268(7–8):867870.CrossRefGoogle Scholar
Coplen, TB, Brand, WA, Gehre, M, Gröning, M, Meijer, HAJ, Toman, B, Verkouteren, RM. 2006. New guidelines for δ¹³C measurements. Anal. Chem. 78(7):2439–2441. doi: 10.1021/ac052027c.CrossRefGoogle ScholarPubMed
Fogtmann-Schulz, A, Ostbo, SM, Nielsen, SGB, Olsen, J, Karoff, C, Knudsen, MF. 2017. Cosmic ray event in 994 CE recorded in radiocarbon from Danish oak. Geophysical Research Letters 44(16):86218628.CrossRefGoogle Scholar
Güttler, D, Beer, J, Bleicher, N, Boswijk, G, Hogg, AG, Palmer, JG, Vockenhuber, C, Wacker, L, Wunder, J. 2013. Worldwide detection of a rapid increase of cosmogenic 14C in AD 775. Poster presented at the Nuclear Physics in Astrophysics.Google Scholar
Hakozaki, M, Miyake, F, Nakamura, T, Kimura, K, Masuda, K, Okuno, M. 2018. Verification of the annual dating of the 10th century Baitoushan volcano eruption based on an AD 774–775 radiocarbon spike. Radiocarbon 60(1):261268.CrossRefGoogle Scholar
Jull, AJT, Panyushkina, IP, Lange, TE, Kukarskih, VV, Myglan, VS, Clark, KJ, Salzer, MW, Burr, GS, Leavitt, SW. 2014. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophysical Research Letters 41(8):3004–3010.CrossRefGoogle Scholar
Jull, AJT, Panyushkina, I, Miyake, F, Masuda, K, Nakamura, T, Mitsutani, T, Lange, TE, Cruz, R, Baisan, C, Janovics, R, Varga, T, Molnar, M. 2018. More rapid 14C excursions in the tree-ring record: a record of different kind of solar activity at about 800 BC? Radiocarbon 60(4):12371248.CrossRefGoogle Scholar
Krąpiec, M. 2001. Holocene dendrochronological standards for subfossil oaks from the area of Southern Poland. Studia Quaternaria 18:4763.Google Scholar
Krąpiec, M, Rakowski, AZ, Huels, M, Wiktorowski, D, Hamann, C. 2018. A new graphitization system for radiocarbon dating with AMS in the Dendrochronological Laboratory at AGH-UST Kraków. Radiocarbon 60:10911100.CrossRefGoogle Scholar
Krąpiec, M, Rakowski, AZ, Pawlyta, J, Wiktorowski, D, Bolka, M. 2020. Absolute dendrochronological scale for pine (Pinus sylvestris L.) from Ujscie (NW Poland), dated using rapid atmospheric 14C changes. Radiocarbon doi: 10.1017/RDC.2020.116CrossRefGoogle Scholar
Mekhaldi, F, Muscheler, R, Adolphi, F, Aldahan, A, Beer, J, McConnell, JR, Possnert, G, Sigl, M, Svensson, A, Synal, H-A, Welten, KC, Woodruff, TE. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6:8611.CrossRefGoogle ScholarPubMed
Michczyńska, DJ, Krąpiec, M, Michczyński, A, Pawlyta, J, Goslar, T, Nawrocka, N, Piotrowska, N, Szychowska-Krąpiec, E, Waliszewska, B, Zborowska, M. 2018. Different pretreatment methods for 14C dating of Younger Dryas and Allerød pine wood (Pinus sylvestris L.). Quaternary Geochronology 48:3844.CrossRefGoogle Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increases in AD 774–775 from tree rings in Japan. Nature 486(7402):240242.CrossRefGoogle ScholarPubMed
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748. doi: 10.1038/ncomms2873.CrossRefGoogle ScholarPubMed
Miyake, F, Masuda, K, Hakozaki, M, Nakamura, T, Tokanai, F, Kato, K, Kimura, K, Mitsutani, T. 2014. Verification of the cosmic-ray event in AD 993–994 by using a Japanese Hinoki tree. Radiocarbon 56(3):11841194.CrossRefGoogle Scholar
Miyake, F, Jull, AJT, Panyushkina, IP, Wacker, L, Salzer, M, Baisan, CH, Lange, T, Cruz, R, Masuda, K, Nakamura, T. 2017. Lagrge 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proceedings of the National Academy of Sciences of the United States of America 114(5):881884. doi: 10.1073/pnas.1613144114.CrossRefGoogle Scholar
Nadeau, M-J, Grootes, PM, Schleicher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239246.CrossRefGoogle Scholar
Nemec, M, Wacker, L, Hajdas, I, Gaggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(2):13581370.CrossRefGoogle Scholar
Olsson, IU, Possnert, G. 1992. 14C activity in different sections and chemical fractions of oak tree rings, A.D. 1938–1981. Radiocarbon 34(3):757767.CrossRefGoogle Scholar
Park, J, Southon, J, Fahrni, S, Creasman, PP, Mewaldt, R. 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59(4):11471156.CrossRefGoogle Scholar
Pavlov, A, Blinov, AV, Konstantinov, AN, Ostryakov, VN, Vasilyev, GI, Vdovina, MA, Volkov, PA. 2013. AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst. Mon. Not. R. Astron. Soc. 435(4):28782884.CrossRefGoogle Scholar
Rakowski, AZ, Krąpiec, M, Huels, M, Pawlyta, J, Dreves, A, Meadows, J. 2015. Increase of radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 774–775. Nuclear Instruments and Methods in Physics Research Section B 351:564568.CrossRefGoogle Scholar
Rakowski, AZ, Krąpiec, M, Huels, M, Pawlyta, J, Boudin, M. 2018. Increase in radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 993–994. Radiocarbon 60(4):12491258. doi: 10.101/rdc.2018.74.CrossRefGoogle Scholar
Rakowski, AZ, Krąpiec, M, Huels, M, Pawlyta, J, Hamann, Ch, Wiktorowski, D. 2019. Abdupt increase of radiocarbon concentration in 660 BC in the tree rings from Grabie near Karkow (SE Poland). Radiocarbon 61(5):13271335.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kromer, B, Manning, SW, Muscheler, R, Palmer, JG, Pearson, C, van der Plicht, J, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, SM, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, P, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757. doi: 10.1017/RDC.2020.41.CrossRefGoogle Scholar
Rodgers, KB, Mikaloff-Fletcher, SE, Bianchi, D, Beaulieu, C, Galbraith, ED, Gnanadesikan, A, Hogg, AG, Iudicone, D, Lintner, BR, Naegler, T, Reimer, PJ. 2011. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Climate of the Past 7(4):11231138.CrossRefGoogle Scholar
Santos, GM, Bird, MI, Pillans, B, Fifield, LK, Alloway, BV, Chappell, J, Hausladen, PA, Arneth, A. 2001. Radiocarbon dating of wood using different pretreatment procedures: Application to the chronology of Rotoehu Ash, New Zealand. Radiocarbon 43(2A):239248.CrossRefGoogle Scholar
Speer, JH. 2010. Fundamentals of tree-ring research. Tucson (AZ): University of Arizona Press. doi: 10.1002/gea.20357. 368 p.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363. doi: 10.1017/S0033822200003672.CrossRefGoogle Scholar
Usoskin, IG, Kovaltsov, GA. 2012. Occurrence of extreme solar particle events: assessment from historical proxy data. The Astrophysical Journal 757:92.CrossRefGoogle Scholar
Wacker, L, Guttler, D, Goll, J, Hurni, J, Synal, H-A, Walti, N. 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56(2):573579. doi: 10.2458/56.17634.CrossRefGoogle Scholar