Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T11:57:03.682Z Has data issue: false hasContentIssue false

Methodological Aspect of Mortars Dating (Poznań, Poland, MODIS)

Published online by Cambridge University Press:  28 December 2017

Danuta Michalska*
Affiliation:
Institute of Geology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, ul. Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
Justyna Czernik
Affiliation:
Poznań Radiocarbon Laboratory, Poznań Park of Science and Technology, ul. Rubież 46, 61-612 Poznań, Poland
Tomasz Goslar
Affiliation:
Poznań Radiocarbon Laboratory, Poznań Park of Science and Technology, ul. Rubież 46, 61-612 Poznań, Poland Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
*
*Corresponding author. Email: danamich@amu.edu.pl, danutamich@go2.pl.

Abstract

An accurate radiocarbon (14C) dating of mortars requires adjusting the sample preparation procedure to each specific mortar composition. In order to follow the influence of mortar components and the preparation procedure on dating results, a mortar intercomparison study (MODIS) was undertaken by 10 organizations (institutes and laboratories) in the analyses of four different types of mortars (see in this issue Hajdas et al. 2017 and Hayen et al. 2017). This paper presents the preparation protocol DoM v.1 applied by the Poznań team, together with dating results on a set of mortar samples used for the of intercomparison. This procedure involved petrographic observations, SEM-EDS analyses, different mechanical-chemical preparation, a test of leaching reaction for available fractions, and finally 14C dating of chosen samples. The applied preparation allows one to obtain dry-sieved grain fractions and different fractions from suspension: grain fractions from suspension collected in different times of leaching, repeated suspension (different portions), as well as suspension collected at different times of sedimentation. The obtained results show the great importance of good sampling and the influence of sample preparation on 14C dating results.

Type
Method Development
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016.

References

Aly, M, Pavia, S. 2015. Mechanical and hygric properties of natural hydraulic lime (NHL) mortars with pozzolans. In: Ilki A, Motavalli M, Inci P, Köhli M, editors. Third Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures. SMAR 2015.Google Scholar
Babu, KG, Prakash, PVS. 1995. Efficiency of silica fume in concrete. Cement & Concrete Research 25(6):12731283.Google Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937938.Google Scholar
Berner, P. 2010. Naturwissenschaftliche Untersuchung römischer Mörtel aus Augusta Raurica. Jahresberichte aus Augst und Kaiseraugst 31:207264. In German.Google Scholar
Binda, L, Baronio, G. 1988. Survey of brick/binder adhesion in powdered brick mortars and plasters. Masonry International Journal 2(3):8792.Google Scholar
Dheilly, RM, Bouguerra, A, Beaudoin, B, Tudo, J, Quéneudec, M. 1999. Hydromagnesite development in magnesian lime mortars. Materials Science and Engineering A 268(1–2):127131.Google Scholar
Diekamp, A, Konzett, J, Mirwald, PW. 2009. Magnesian lime mortars—identification of magnesium-phases in medieval mortars and plasters with imaging techniques. In: Middendorf B, Just A, Klein D, Glaubitt A, Simon J, editors. Proceedings of the 12th Euroseminar on Microscopy Applied to Building Materials, 15–19.09.2009. Dortmund, Germany. p 309317.Google Scholar
Edelman, N. 1985. Explanation to the maps of Pre-Quaternary rocks, Sheet 1034. Summary in English on PreQuaternary Rocks of the Nauvo (Nagu) Map-Sheet Area. Espoo: Geological Survey of Finland. 47 p.Google Scholar
Ehlers, C, Lindroos, A, Jaanus-Järkkälä, M. 1986. Stratigraphy and geochemistry in the Proterozoic mafic rocks of the Nagu-Korpo area, SW Finland. Precambrian Research 32(4):297315.CrossRefGoogle Scholar
Folk, RL, Valastro, S. 1979. Dating of lime mortar by 14C. In: Berger R, Suess H, editors. Radiocarbon Dating: Proceedings of the Ninth International Conference. Berkeley: University of California Press. p 721–30.Google Scholar
Goslar, T, Czernik, J, Goslar, E. 2004. Low-energy 14C AMS in Poznan Radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research B 223–224:511.Google Scholar
Goslar, T, Nawrocka, D, Czernik, J. 2009. Foraminiferous limestones in 14C dating of mortar. Radiocarbon 51(2):857866.Google Scholar
Hajdas, I, Trumm, J, Bonani, G, Biechele, C, Maurer, M, Wacker, L. 2012. Roman ruins as an experiment for radiocarbon dating of mortar. Radiocarbon 54(3–4):897903.Google Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanova, P, Guibert, P. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-comparison Study (MODIS). Radiocarbon 59(6):this issue.Google Scholar
Hayen, R, Van Strydonck, M, Boaretto, E, Lindroos, A, Heinemeier, J, Ringbom, Å, Hueglin, S, Michalska, D, Hajdas, I, Marzaioli, F, Maspero, F, Galli, A, Gilberto, A, Ch, Moreau, Guilbert, P, Caroselli, M. 2017. Mortar dating methodology: assessing recurrent issues and needs for further research. Radiocarbon 59(6):this issue.Google Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, A, von Konow, T, Rud, N. 1997. AMS 14C dating of lime mortar. Nuclear Instruments and Methods in Physics Research B 123:487495.Google Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Åland Islands, Finland. Radiocarbon 52(1):171204.Google Scholar
Hodgins, G, Lindroos, A, Ringbom, Å, Heinemeier, J, Brock, F. 2011. 14C dating of Roman mortars—preliminary tests using diluted hydrochloric acid injected in batches. Commentationes Humanarum Litterarum 128:209213.Google Scholar
Hüglin, S. 2011. Medieval mortar mixers revisited, Basle and beyond. Zeitschrift für Archäologie des Middelalters (ZAM) 39:189212.Google Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by the carbon-14 method. Nature 201(4920):742.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Brock, F, Sonck-Koota, P, Pehkonen, M, Suksi, J. 2011. Problems in radiocarbon dating of Roman pozzolana mortars. Commentationes Humanarum Litterarum 128:214230.Google Scholar
Lindroos, A, Orsel, E, Heinemeier, J, Lill, J-O, Gunnelius, K. 2014. 14C dating of Dutch mortars made from burned shell. Radiocarbon 56(3):959968.Google Scholar
Malhotra, VM, Carette, GG. 1982. Silica fume: a pozzolan of new interest for use in some concrete. Concrete Construction 27(5):443446.Google Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: Preliminary accuracy evaluation of a novel methodology. Analytical Chemistry 83(6):20382045.Google Scholar
Marzaioli, F, Nonni, S, Passariello, I, Capano, M, Ricci, P, Lubritto, C, De Cesare, N, Eramo, G, Castillo, JAQ, Terrasi, F. 2013. Accelerator mass spectrometry 14C dating of lime mortars: methodological aspects and field study applications at CIRCE (Italy). Nuclear Instruments and Methods in Physics Research B 294:246251.Google Scholar
Michalska, D, Czernik, J. 2015. Carbonates in leaching reactions in context of 14C dating. Nuclear Instruments and Methods in Physics Research B 361:431439.Google Scholar
Michalska, D, Pazdur, A, Czernik, J, Szczepaniak, M, Żurakowska, M. 2013. Cretaceous aggregate and reservoir effect in dating of binding materials. Geochronometria 40(1):3341.Google Scholar
Nawrocka-Michalska, D, Michczyńska, DJ, Pazdur, A, Czernik, J. 2007. Radiocarbon chronology of the ancient settlement on the Golan Heights. Radiocarbon 49(2):625637.Google Scholar
Nawrocka, D, Michniewicz, J, Pawlyta, J, Pazdur, A. 2005. Application of radiocarbon method for dating of lime mortars. Geochronometria 24:109115.Google Scholar
Nawrocka, D, Czernik, J, Goslar, T. 2009. 14C dating of carbonate mortars from Polish and Israeli sites. Radiocarbon 51(2):857866.Google Scholar
Nonni, S, Marzaioli, F, Secco, M, Passariello, I, Capano, M, Lubritto, C, Mignardi, S, Tonghini, C, Terrasi, F. 2013. 14C mortar dating: the case of the Medieval Shayzar Citadel, Syria. Radiocarbon 55(2):514525.Google Scholar
Pavía, S, Fitzgerald, B, Howard, R. 2005. Evaluation of properties of magnesian lime mortar. In: Brebbia CA, Torpiano A, editors. Structural studies, repair and maintenance of heritage architecture IX, Malta, June 2005. WIT Transactions on the built environment Volume 83. Southampton, UK: WIT Press. p 375384.Google Scholar
Ramsey, CB, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2):720730.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, J, Hatte, C, Heaton, TJ, Hoffmann, DI, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 Radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Ringbom, Å, Heinemeier, J, Lindroos, A, Brock, F. 2011. Mortar dating and Roman pozzolana: current research on Roman mortar and concrete. In: Ringbom Å, Hohlfelder RL, editors. Proceedings of the conference March 27–29, 2008, Helsinki. Commentationes Humanarum Litterarum 128:187–206.Google Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: learning from experience. Radiocarbon 56(2):619635.CrossRefGoogle Scholar
Sjöberg, P, Lindroos, A, Ringbom, Å. 2011. Radiocarbon dating of the medieval churches of the Aboland Archipelago. In: Hansson J, Ranta H, editors. Archaeology and History of Churches in Baltic Region. p 171195.Google Scholar
Sonninen, E, Jungner, H. 2001. An improvement in preparation of mortar for radiocarbon dating. Radiocarbon 43(2A):271273.Google Scholar
Urbanova, P, Hourcade, D, Ney, C, Guibert, P. 2015. Sources of uncertainties in OSL dating of archaeological mortars: the case study of the Roman amphitheatre Palais-Gallien in Bordeaux. Radiation Measurements 72:100110.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, C, Marechal, J. 1986. The influence of contaminating carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702710.Google Scholar
Van Strydonck, M, Dupas, M. 1989. Isotopic fractionation of oxygen and carbon in lime mortar under natural environmental conditions. Radiocarbon 31(3):610618.CrossRefGoogle Scholar
Wong, HS, Abdul Razak, H. 2005. Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance. Cement & Concrete Research 35(4):696702.Google Scholar
Supplementary material: Image

Michalska et al supplementary material

Michalska et al supplementary material 1

Download Michalska et al supplementary material(Image)
Image 644.1 KB