Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T18:24:56.829Z Has data issue: false hasContentIssue false

Marine Radiocarbon Reservoir Age Along the Chilean Continental Margin

Published online by Cambridge University Press:  01 October 2018

Víctor Merino-Campos
Affiliation:
Postgraduate School in Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Chile
Ricardo De Pol-Holz*
Affiliation:
Dirección Programas Antárticos y Subantárticos and Center for Climate and Resilience Research (CR)2, Universidad de Magallanes, Punta Arenas, Chile
John Southon
Affiliation:
Department of Earth System Science, University of California, Irvine, USA
Claudio Latorre
Affiliation:
Department of Ecology, Pontificia Universidad Católica de Chile, Santiago, Chile
Silvana Collado-Fabbri
Affiliation:
Postgraduate School in Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Chile
*
*Corresponding author. Email: ricardo.depol@umag.cl.

Abstract

We present 37 new radiocarbon (14C) measurements from mollusk shells fragments sampled along the Chilean continental margin and stored in museum collections with known calendar age. These measurements were used to estimate the modern pre-bomb regional marine 14C age deviations from the global ocean reservoir (∆R). Together with previously published data, we calculated regional mean ∆R values for five oceanographic macro regions along the coast plus one for a mid-latitude open ocean setting. In general, upwelling regions north of 42ºS show consistent although sometimes highly variable ∆R values with regional averages ranging from 141 to 196 14C yr, whereas the mid-latitude open ocean location of the Juan Fernández archipelago and the southern Patagonian region show minor, ∆R of 40±38 14C yr, and 52±47 14C yr respectively. We attribute the alongshore decreasing pattern toward higher latitudes to the main oceanographic features along the Chilean coast such as perennial coastal upwelling in northern zone, seasonally variable upwelling at the central part and the large freshwater influence upon the southern Patagonian channels.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acha, EM, Mianzan, HW, Guerrero, RA, Favero, M, Bava, J. 2004. Marine fronts at the continental shelves of austral South America, physical and ecological processes. Journal Marine Systems 44:83105.Google Scholar
Alves, EQ, Macario, K, Ascough, P, Bronk Ramsey, C. 2018. The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms, and prospects. Reviews of Geophysics 56:278305.Google Scholar
Ascough, PL, Cook, GT, Dugmore, AJ. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29:532547.Google Scholar
Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3: 635645.Google Scholar
Bard, E, Arnold, M, Mangeru, J, Paterne M, , Labeyrie, L, Duprat, J, Mélières, M, Sonstegaard, E, Duplessy, J. 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126:275287.Google Scholar
Berkman, PA, Forman, SL. 1996. Pre-bomb and the reservoir correction for calcareous marine species in the Southern Ocean. Geophysical Research Letters 23(4):363366.Google Scholar
Broecker, WS. 1987. The great ocean conveyor. Natural History Magazine 97:7482.Google Scholar
Broecker, WS, Klas, M, Clark, E, Bonani, G, Ivy, S, Wolfli, W. 1991. The influence of CaCO3 dissolution on core top radiocarbon ages for deep sea sediments. Paleoceanography 6(5):593608.Google Scholar
Carré, M, Jackson, D, Maldonado, A, Chase, B, Sachs, P. 2016. Variability of 14C reservoir age and air-sea flux of CO2 in the Perú-Chile upwelling region during the past 12,000 years. Quaternary Research 85:8793.Google Scholar
Cook, GT, MacKenzie, AB, Muir, GKP, Mackie, G, Gulliver, P. 2004. Sellafiel-derived anthropogenic 14C in the marine intertidal environment of the NE Irish Sea. Radiocarbon 46(2):877883.Google Scholar
Culleton, BJ, Kennett, DJ, Ingram, BL, Erlandson, JM, Southon, JR. 2006. Intrashell radiocarbon variability in marine mollusks. Radiocarbon 48(3):387400.Google Scholar
Dávila, P, Figueroa, D, Müller, E. 2002. Freshwater input into the coastal ocean and its relation with the salinity distribution off austral Chile (35–55°S). Continental Shelf Research 22:521534.Google Scholar
Druffel, E. 1981. Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean. Geophysical Research Letters 8(1):5962.Google Scholar
Druffel, E, Griffin, S. 1995. Regional variability of surface ocean radiocarbon from southern Great Barrier Reef corals. Radiocarbon 37(2):517524.Google Scholar
Dye, T. 1994. Apparent ages of marine shells: Implications for archaeological dating in Hawaii. Radiocarbon 36(1):5157.Google Scholar
Forman, S, Polyak, L. 1997. Radiocarbon content of pre-bomb marine mollusks and variations in the 14C reservoir age for coastal areas of the Barents and Karaseas, Russia. Geophysical Research Letters 24(8):885888.Google Scholar
Gillikin, D, Lorrain, A, Bouillon, S, Willenz, P, Dehairs, F. 2006. Shell carbon isotopic composition of Mytilusedulis shells: relation to metabolism, salinity, δ13C DIC and phytoplankton. Organic Geochemistry 37:13711382.Google Scholar
Goodfriend, GA, Flessa, KW. 1997. Radiocarbon reservoir ages in the Gulf of California: Roles of upwelling and flow from the Colorado River. Radiocarbon 39(2):139148.Google Scholar
Guilderson, T, Schrag, D, Goddard, E, Kashgarian, M, Wellington, G, Linsley, B. 2000. Southwest Subtropical Pacific surface water radiocarbon in a high-resolution coral record. Radiocarbon 42(2):249256.Google Scholar
Heier-Nielsen, S, Heinemeier, J, Nielsen, HL, Rud, N. 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37(3):875882.Google Scholar
Hervé, F, Quiroz, D, Duhart, P. 2009. Main geological aspects of the Chilean Fjord Region. In: Vreni Hausserman V, Försterra G, editors. Marine Benthic Fauna of Chilean Patagonia. Santiago: Nature in Focus. p 3042.Google Scholar
Hinojosa, J, Moy, C, Prior, C, Eglinton, T, McIntyre, C, Stirling, C, Wilson, G. 2015. Investigating the influence of regional climate and oceanography on marine radiocarbon reservoir ages in southwest New Zealand. Estuarine, Costal and Shelf Science 167:526539.Google Scholar
Hogg, A, Higham, T, Dahm, J. 1998. 14C dating of modern marine and estuarine shellfish. Radiocarbon 40(2):975984.Google Scholar
Hua, Q. 2009. Radiocarbon: A chronological tool for the recent past. Quaternary Geochronology 4:378390.Google Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edward, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):10591086.Google Scholar
Ingram, B, Southon, J. 1996. Reservoir ages in eastern Pacific coastal and estuarine waters. Radiocarbon 38(3):573582.Google Scholar
Iriarte, JL, González, HE, Liu, KK, Rivas, C, Valenzuela, C. 2007. Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5-43°S). Estuarine, Coastal and Shelf Science 74:471480.Google Scholar
Kroopnick, PM. 1985. The distribution of 13C of ∑CO2 in the world oceans. Deep-Sea Research 32(1):5784.Google Scholar
Latorre, C, De Pol-Holz, R, Carter, C, Santoro, C. 2017.Using archaeological Shell middens as a proxy for past local coastal upwelling in northern Chile. Quaternary International 427A: 128136.Google Scholar
Letelier, J, Pizarro, O, Nuñez, S. 2009. Seasonal variability of coastal upwelling and the upwelling front off central Chile. Journal of Geophysical Research 114: C12009.Google Scholar
Lorrain, A, Paulet, Y, Chauvaud L, , Dunbar, R, Mucciarone, D, Fontugne, M. 2004. δ13C variation scallop shells: increasing metabolic carbon contribution with body size?. Geochimica et Cosmochimica Acta 68(17):35093519.Google Scholar
Loyd, D, Vogel, J, Trumbore, S. 1991. Lithium contamination in AMS measurements of 14C. Radiocarbon 33(3):297301.Google Scholar
Macario, KD, Alves, EQ, Carvalho, C, Oliveira, FM, Bronk Ramsey, C, Chivall, D, Souza, R, Simone, LRL, Cavallari, DC. 2016. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir. Scientific Reports 6:27395. doi: 10.1038/srep27395.Google Scholar
Mc Connaughey, T, Gillikin, D. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28:287299.Google Scholar
Ortlieb, L, Vargas, G, Saliège, JF. 2011. Marine radiocarbon reservoir effect along the northern Chile–southern Peru coast (14–24°S) throughout the Holocene. Quaternary Research 75:91103.Google Scholar
Paskoff, R. 2010. Geomorfología de la costa de Chile. En: Geología marina. Comité Oceanográfico Nacional. Chile. p. 7683.Google Scholar
Petchey, F, Anderson, A, Zondervan, A, Ulm, S, Hogg, A. 2008. New marine ∆R values for the south Pacific Subtropical Gyre region. Radiocarbon 50(3):373397.Google Scholar
Petchey, F, Ulm, S, David, B, McNiven, I, Asmussen, B, Tomkins, H, Richards, T, Rowe, C, Leavesley, M, Mandui, H, Stanisic, J. 2012. 14C Marine reservoir variability in herbivores and deposit–feeding gastropods from an open coastline, Papua New Guinea. Radiocarbon 54(3–4):967978.Google Scholar
Pigati, J, Rech, J, Nekola, J. 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5:519532.Google Scholar
Reimer, O, Bard, E, Bayliss, A, Beck, J, Blackwell, P, Bronk, C, Buck, C, Cheng, H, Lawrence, R, Friedrich, M, Grootes, P, Guilderson, T, Haflidason, H, Hajdas, I, Hatté, C, Heaton, T, Hoffman, D, Hogg, A, Hughen, A, Kaiser, K, Kromer, B, Manning, S, Niu, M, Reimer, R, Richards, D, Scott, E, Southon, J, Staff, R, Turney, C, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years Cal BP. Radiocarbon 55(4):18691887.Google Scholar
Shaffer, G, Hormazábal, S, Pizarro, O, Salinas, S. 1999. Seasonal and interannual variability of currents and temperature off central Chile. Journal of Geophysical Research 104:2995129961.Google Scholar
Siani, G, Paterne, M, Arnold, , Bard, E, Métivier, B, Tisnerat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black sea. Radiocarbon 42(2):271280.Google Scholar
Silva, N, Calvete, C, Sievers, H. 1997. Características oceanográficas físicas y químicas de canales australes chilenos entre Puerto Montt y laguna San Rafael (Crucero Cimar Fiordo1). Ciencia y Tecnología del Mar 20:23106.Google Scholar
Silva, N, Neshyba, S. 1977. Corrientes superficiales frente a la costa austral de Chile. Ciencia y Tecnología del Mar 3:3742.Google Scholar
Silva, N, Neshyba, S. 1979. On the southernmost extension of the Perú–Chile Undercurrent. Deep–Sea Research 26:13871393.Google Scholar
Silva, N, Rojas, N, Fedele, A. 2009. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial subsurface water off Chile. Deep-Sea Research II 56:10041020.Google Scholar
Silva, N, Vargas, C. 2014. Hypoxia in Chilean Patagonian Fjords. Progress in Oceanography 129A:6274.Google Scholar
Soares, A, Dias, J. 2006. Coastal upwelling and radiocarbon – evidence for temporal fluctuations in ocean reservoir effect off Portugal during the Holocene. Radiocarbon 48(1):4560.Google Scholar
Southon, J, Kashgarian, M, Metivier, B, Yim, WS 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44(1):167180.Google Scholar
Southon, J, Oakland, A, True, D. 1995. A comparison of marine and terrestrial radiocarbon ages from Northern Chile. Radiocarbon 37(2):389393.Google Scholar
Strub, T, Mesías, J, Montecino, V, Rutllant, J, Salinas, S. 1998, Coastal ocean circulation off western South America. In: Robinson AR, Brink KH, editors. The Sea. p. 273313.Google Scholar
Stuiver, M, Braziunas, T. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples back to 10,000 B.C. Radiocarbon 35(1):137191.Google Scholar
Stuiver, M, Pearson, G, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9,000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Stuiver, M, Polach, H. 1977. A discussion and reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Takahashi, T. 2001. Carbon Dioxide (CO 2 ) Cycle . Columbia University: Academic Press. p. 400407.Google Scholar
Takahashi, T, Sutherland, S, Sweeney, C, Poisson, A, Metzl, N, Tilbrook, B, Bates, N, Wannikhof, R, Feely, R, Sabine, C, Olafsson, J, Nojiri, Y. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research II 49:16011622.Google Scholar
Tanaka, N, Monaghan, MC, Rye, DM. 1986. Contribution of metabolic carbon to mollusk and barnacle shell carbonate. Nature 320:520523.Google Scholar
Taylor, R, Berger, R. 1967. Radiocarbon content of marine shells from the Pacific coast of central and South America. Science. 158:11801182.Google Scholar
Toggweiler, J, Dixon, K, Broecker, W. 1991. The Peru upwelling and the ventilation of the South Pacific Thermocline. Journal of Geophysical Research 96(11):2046720497.Google Scholar
Torres, R, Pantoja, S, Harada, N, González, H, Daneri, G, Frangopulos, M, Rutlant, J, Duarte, C, Rúiz-Halpern, S, Mayol, E, Fukasawa, M. 2011. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. Journal of Geophysical Research 116. C09006.Google Scholar
Vogel, J, Southon, J, Nelson, D, Brown, T. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. In: Wolfli W, Polach H, Andersen H, editors. Proceedings, 3rd International Conference on AMS. Nuclear Instruments and Methods B5: 289.Google Scholar
Wanninkhof, R, McGillis, WR. 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters 26(13):18891892.Google Scholar