Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T21:00:15.383Z Has data issue: false hasContentIssue false

Fish Reservoir Effect on Charred Food Residue 14C Dates: Are Stable Isotope Analyses the Solution?

Published online by Cambridge University Press:  18 July 2016

Mathieu Boudin*
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
Mark Van Strydonck
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
Philippe Crombé
Affiliation:
Ghent University, Department of Archaeology and Ancient History of Europe, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium
Wim De Clercq
Affiliation:
Ghent University, Department of Archaeology and Ancient History of Europe, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium
Robert M van Dierendonck
Affiliation:
Foundation for Cultural Heritage Zeeland, Postbus 49, 4330 AA Middelburg, the Netherlands
Hans Jongepier
Affiliation:
Foundation for Cultural Heritage Zeeland, Postbus 49, 4330 AA Middelburg, the Netherlands
Anton Ervynck
Affiliation:
Flemish Heritage Institute, Koning Albert II-laan 19, Box 5, 1210 Brussels, Belgium
An Lentacker
Affiliation:
Flemish Heritage Institute, Koning Albert II-laan 19, Box 5, 1210 Brussels, Belgium
*
Corresponding author. Email: Mathieu.boudin@kikirpa.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to verify the relative dating based on pot type morphology and decoration of the Swifterbant pottery collected at the Final Mesolithic site of Doel “Deurganckdok” (Belgium) and of the Late Iron Age pottery excavated at Grijpskerke (the Netherlands), direct radiocarbon dates were obtained on charred food residue preserved on the inner surface of numerous potsherds. In addition, a number of indirect 14C dates were obtained from samples of organic material. In the case of Doel, the results indicate an important incompatibility between the charred food residue dates and the other dates, the former being systematically older. This difference may be explained by a reservoir effect of the charred food residue, caused by the processing of (freshwater) fish. The 14C dates for the Grijpskerke site are in agreement between the charred food residue and the organic material. The stable isotopes of the charred food residue were analyzed to demonstrate fish processing in the pottery, but the results were inconclusive.

Type
Bone Dating and Paleodiet Studies
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Boudin, M, Van Strydonck, M, Crombé, P. 2009. Radiocarbon dating of pottery food crusts: reservoir effect or not? The case of the Swifterbant pottery from Doel “Deurganckdok” (Belgium). In: Crombé, P, Van Strydonck, M, Sergant, J, Boudin, M, Bats, M, editors. Chronology and Evolution in the Mesolithic of North-West Europe. Newcastle upon Tyne: Cambridge Scholars Publishing. p 727–45.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.Google Scholar
Craig, OE, Forster, M, Andersen, SH, Koch, E, Crombé, P, Milner, NJ, Stern, B, Bailey, GN, Heron, CP. 2007. Molecular and isotopic demonstration of the processing aquatic products in northern European prehistoric pottery. Archaeometry 49(1):135–52.Google Scholar
Crombé, P, editor. 2005. The Last Hunter-Gatherer-Fishermen in Sandy Flanders (NW Belgium); The Verrebroek and Doel Excavation Projects, Part 1: Palaeo-environment, Chronology and Features. Archaeological Reports Ghent University.Google Scholar
De Clercq, W. 2009. Lokale gemeenschappen in het Imperium Romanum. Transformaties in de rurale bewoningsstructuur en de materiële structuur in de landschappen van het noordelijk deel van de civitas Menapiorum (Provincie Gallia-Belgica, ca. 100 v.-400 n. Chr.) [unpublished PhD thesis]. Ghent University. p 423–30 + appendix.Google Scholar
Dudd, SN, Evershed, RP. 1998. Direct demonstration of milk as an element of archaeological economies. Science 282(5393):1478–80.Google Scholar
Dudd, SN, Evershed, RP, Gibson, AM. 1999. Evidence for varying patterns of exploitation of animal products in different prehistoric pottery traditions based on lipids preserved in surface and absorbed residues. Journal of Archaeological Science 26(12):1473–82.Google Scholar
Evershed, RP. 2008. Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. World Archaeology 40(1):2647.Google Scholar
Fischer, A, Heinemeier, J. 2003. Freshwater reservoir effect in 14C dates of food residue on pottery. Radiocarbon 45(3):449–66.Google Scholar
Hardy, J, Parmentier, M, Fanni, J. 1999. Functionality of nutrients and thermal treatments of food. Proceedings of the Nutrition Society 58:579–85.Google Scholar
Hart, JP, Lovis, WA. 2007. The freshwater reservoir and radiocarbon dates on cooking residues: Old apparent ages or a single outlier? Comments on Fischer and Heinemeier (2003). Radiocarbon 49(3):1403–10.Google Scholar
Hart, JP, Lovis, WA, Schulenberg, JK, Urquhart, GR. 2007. Paleodietary implications from stable carbon isotope analysis of experimental cooking residues. Journal of Archaeological Science 34(5):804–13.Google Scholar
Jongepier, J. 2003. Afronding onderzoek IJzertijd Grijpskerke. Zeeuws Erfgoed 2(4):6.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–2.Google Scholar
Nadeau, M-J, Grootes, PM, Schliecher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239–45.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Romanus, K, Poblome, J, Verbeke, K, Luypaerts, A, Jacobs, P, De Vos, D, Waelkens, M. 2007. An evaluation of analytical and interpretative methodologies for the extraction and identification of lipids associated with pottery sherds from the site of Sagalassos, Turkey. Archaeometry 49(4):729–47.Google Scholar
Sergant, J, Crombé, Ph, Perdaen, Y. 2006. The sites of Doel “Deurganckdok” and the Mesolithic/Neolithic transition in the sandy lowlands of Belgium. In: Guilaine, J, van Berg, P-L, editors. La Néolithisation/The Neolithisation Process (Commission XIV), Proceedings of the XIVth Congress of the Union International de Sciences Pré- et Protohistoriques. Liège, 2001. British Archaeological Reports, International Series 1520. Oxford: Archaeopress. p 5360.Google Scholar
Spangenberg, JE, Jacomet, S, Schibler, J. 2006. Chemical analyses of organic residues in archaeological pottery from Arbon Bleiche 3, Switzerland—evidence for dairying in the late Neolithic. Journal of Archaeological Science 33(1):113 Google Scholar
Van Dierendonck, RM. 2009. Uitwerking ritueel depot Grijpskerke-Kievitshoekweg. Zeeuws Erfgoed 8(3):17.Google Scholar
Van Dierendonck, RM, Jongepier, J. 2009. Evaluatierapport opgraving met beperkte voorwaarden Grijpskerke-Kievitshoekweg, Gemeente Veere, Middelburg.Google Scholar
Van Heeringen, RM. 1988. De bewoning van Zeeland in de IJzertijd. Archief, Mededelingen van het Koninklijk Zeeuws Genootschap der Wetenschappen. p 143.Google Scholar
Van Heeringen, RM. 1992. The Iron Age in the Western Netherlands. Rijksdienst van het Oudheidkundig. Bodemonderzoek. 39:157255.Google Scholar
Van Strydonck, M, Van der Borg, K. 1990–91. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bulletin Koninklijk Instituut voor het Kunstpatrimonium 23:228–34.Google Scholar
Van Strydonck, M, De Moor, A, Bénazeth, D. 2004. 14C dating compared to art historical dating of Roman and coptic textiles from Egypt. Radiocarbon 46(1):231–44.Google Scholar